Metamath Proof Explorer


Theorem 0trlon

Description: A trail of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 8-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0wlk.v V=VtxG
Assertion 0trlon P:00VP0=NNTrailsOnGNP

Proof

Step Hyp Ref Expression
1 0wlk.v V=VtxG
2 1 0wlkon P:00VP0=NNWalksOnGNP
3 simpl P:00VP0=NP:00V
4 1 0wlkonlem1 P:00VP0=NNVNV
5 1 1vgrex NVGV
6 5 adantr NVNVGV
7 1 0trl GVTrailsGPP:00V
8 4 6 7 3syl P:00VP0=NTrailsGPP:00V
9 3 8 mpbird P:00VP0=NTrailsGP
10 0ex V
11 10 a1i P:00VP0=NV
12 1 0wlkonlem2 P:00VP0=NPV𝑝𝑚00
13 1 istrlson NVNVVPV𝑝𝑚00NTrailsOnGNPNWalksOnGNPTrailsGP
14 4 11 12 13 syl12anc P:00VP0=NNTrailsOnGNPNWalksOnGNPTrailsGP
15 2 9 14 mpbir2and P:00VP0=NNTrailsOnGNP