Metamath Proof Explorer


Theorem 0vtxrusgr

Description: A graph with no vertices and an empty edge function is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0vtxrusgr GWVtxG=iEdgG=k0*GRegUSGraphk

Proof

Step Hyp Ref Expression
1 usgr0v GWVtxG=iEdgG=GUSGraph
2 1 adantr GWVtxG=iEdgG=k0*GUSGraph
3 0vtxrgr GWVtxG=v0*GRegGraphv
4 breq2 v=kGRegGraphvGRegGraphk
5 4 rspccv v0*GRegGraphvk0*GRegGraphk
6 3 5 syl GWVtxG=k0*GRegGraphk
7 6 3adant3 GWVtxG=iEdgG=k0*GRegGraphk
8 7 imp GWVtxG=iEdgG=k0*GRegGraphk
9 isrusgr GWk0*GRegUSGraphkGUSGraphGRegGraphk
10 9 3ad2antl1 GWVtxG=iEdgG=k0*GRegUSGraphkGUSGraphGRegGraphk
11 2 8 10 mpbir2and GWVtxG=iEdgG=k0*GRegUSGraphk
12 11 ralrimiva GWVtxG=iEdgG=k0*GRegUSGraphk