Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Cosets by ` R `
1cossres
Next ⟩
dfcoels
Metamath Proof Explorer
Ascii
Unicode
Theorem
1cossres
Description:
The class of cosets by a restriction.
(Contributed by
Peter Mazsa
, 20-Apr-2019)
Ref
Expression
Assertion
1cossres
⊢
≀
R
↾
A
=
x
y
|
∃
u
∈
A
u
R
x
∧
u
R
y
Proof
Step
Hyp
Ref
Expression
1
df-coss
⊢
≀
R
↾
A
=
x
y
|
∃
u
u
R
↾
A
x
∧
u
R
↾
A
y
2
df-rex
⊢
∃
u
∈
A
u
R
x
∧
u
R
y
↔
∃
u
u
∈
A
∧
u
R
x
∧
u
R
y
3
anandi
⊢
u
∈
A
∧
u
R
x
∧
u
R
y
↔
u
∈
A
∧
u
R
x
∧
u
∈
A
∧
u
R
y
4
brres
⊢
x
∈
V
→
u
R
↾
A
x
↔
u
∈
A
∧
u
R
x
5
4
elv
⊢
u
R
↾
A
x
↔
u
∈
A
∧
u
R
x
6
brres
⊢
y
∈
V
→
u
R
↾
A
y
↔
u
∈
A
∧
u
R
y
7
6
elv
⊢
u
R
↾
A
y
↔
u
∈
A
∧
u
R
y
8
5
7
anbi12i
⊢
u
R
↾
A
x
∧
u
R
↾
A
y
↔
u
∈
A
∧
u
R
x
∧
u
∈
A
∧
u
R
y
9
3
8
bitr4i
⊢
u
∈
A
∧
u
R
x
∧
u
R
y
↔
u
R
↾
A
x
∧
u
R
↾
A
y
10
9
exbii
⊢
∃
u
u
∈
A
∧
u
R
x
∧
u
R
y
↔
∃
u
u
R
↾
A
x
∧
u
R
↾
A
y
11
2
10
bitri
⊢
∃
u
∈
A
u
R
x
∧
u
R
y
↔
∃
u
u
R
↾
A
x
∧
u
R
↾
A
y
12
11
opabbii
⊢
x
y
|
∃
u
∈
A
u
R
x
∧
u
R
y
=
x
y
|
∃
u
u
R
↾
A
x
∧
u
R
↾
A
y
13
1
12
eqtr4i
⊢
≀
R
↾
A
=
x
y
|
∃
u
∈
A
u
R
x
∧
u
R
y