Metamath Proof Explorer


Theorem 1cossres

Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019)

Ref Expression
Assertion 1cossres RA=xy|uAuRxuRy

Proof

Step Hyp Ref Expression
1 df-coss RA=xy|uuRAxuRAy
2 df-rex uAuRxuRyuuAuRxuRy
3 anandi uAuRxuRyuAuRxuAuRy
4 brres xVuRAxuAuRx
5 4 elv uRAxuAuRx
6 brres yVuRAyuAuRy
7 6 elv uRAyuAuRy
8 5 7 anbi12i uRAxuRAyuAuRxuAuRy
9 3 8 bitr4i uAuRxuRyuRAxuRAy
10 9 exbii uuAuRxuRyuuRAxuRAy
11 2 10 bitri uAuRxuRyuuRAxuRAy
12 11 opabbii xy|uAuRxuRy=xy|uuRAxuRAy
13 1 12 eqtr4i RA=xy|uAuRxuRy