Metamath Proof Explorer


Theorem 1cossres

Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019)

Ref Expression
Assertion 1cossres R A = x y | u A u R x u R y

Proof

Step Hyp Ref Expression
1 df-coss R A = x y | u u R A x u R A y
2 df-rex u A u R x u R y u u A u R x u R y
3 anandi u A u R x u R y u A u R x u A u R y
4 brres x V u R A x u A u R x
5 4 elv u R A x u A u R x
6 brres y V u R A y u A u R y
7 6 elv u R A y u A u R y
8 5 7 anbi12i u R A x u R A y u A u R x u A u R y
9 3 8 bitr4i u A u R x u R y u R A x u R A y
10 9 exbii u u A u R x u R y u u R A x u R A y
11 2 10 bitri u A u R x u R y u u R A x u R A y
12 11 opabbii x y | u A u R x u R y = x y | u u R A x u R A y
13 1 12 eqtr4i R A = x y | u A u R x u R y