Metamath Proof Explorer


Theorem 1elfz0hash

Description: 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020)

Ref Expression
Assertion 1elfz0hash AFinA10A

Proof

Step Hyp Ref Expression
1 1nn0 10
2 1 a1i AFinA10
3 hashcl AFinA0
4 3 adantr AFinAA0
5 hashge1 AFinA1A
6 elfz2nn0 10A10A01A
7 2 4 5 6 syl3anbrc AFinA10A