Metamath Proof Explorer


Theorem 1exp

Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion 1exp N1N=1

Proof

Step Hyp Ref Expression
1 1ex 1V
2 1 snid 11
3 ax-1ne0 10
4 ax-1cn 1
5 snssi 11
6 4 5 ax-mp 1
7 elsni x1x=1
8 elsni y1y=1
9 oveq12 x=1y=1xy=11
10 1t1e1 11=1
11 9 10 eqtrdi x=1y=1xy=1
12 7 8 11 syl2an x1y1xy=1
13 ovex xyV
14 13 elsn xy1xy=1
15 12 14 sylibr x1y1xy1
16 7 oveq2d x11x=11
17 1div1e1 11=1
18 16 17 eqtrdi x11x=1
19 ovex 1xV
20 19 elsn 1x11x=1
21 18 20 sylibr x11x1
22 21 adantr x1x01x1
23 6 15 2 22 expcl2lem 1110N1N1
24 2 3 23 mp3an12 N1N1
25 elsni 1N11N=1
26 24 25 syl N1N=1