Metamath Proof Explorer


Theorem 1loopgrvd0

Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v φVtxG=V
1loopgruspgr.a φAX
1loopgruspgr.n φNV
1loopgruspgr.i φiEdgG=AN
1loopgrvd0.k φKVN
Assertion 1loopgrvd0 φVtxDegGK=0

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v φVtxG=V
2 1loopgruspgr.a φAX
3 1loopgruspgr.n φNV
4 1loopgruspgr.i φiEdgG=AN
5 1loopgrvd0.k φKVN
6 5 eldifbd φ¬KN
7 snex NV
8 fvsng AXNVANA=N
9 2 7 8 sylancl φANA=N
10 9 eleq2d φKANAKN
11 6 10 mtbird φ¬KANA
12 4 dmeqd φdomiEdgG=domAN
13 dmsnopg NVdomAN=A
14 7 13 mp1i φdomAN=A
15 12 14 eqtrd φdomiEdgG=A
16 4 fveq1d φiEdgGi=ANi
17 16 eleq2d φKiEdgGiKANi
18 15 17 rexeqbidv φidomiEdgGKiEdgGiiAKANi
19 fveq2 i=AANi=ANA
20 19 eleq2d i=AKANiKANA
21 20 rexsng AXiAKANiKANA
22 2 21 syl φiAKANiKANA
23 18 22 bitrd φidomiEdgGKiEdgGiKANA
24 11 23 mtbird φ¬idomiEdgGKiEdgGi
25 5 eldifad φKV
26 1 eleq2d φKVtxGKV
27 25 26 mpbird φKVtxG
28 eqid VtxG=VtxG
29 eqid iEdgG=iEdgG
30 eqid VtxDegG=VtxDegG
31 28 29 30 vtxd0nedgb KVtxGVtxDegGK=0¬idomiEdgGKiEdgGi
32 27 31 syl φVtxDegGK=0¬idomiEdgGKiEdgGi
33 24 32 mpbird φVtxDegGK=0