Metamath Proof Explorer


Theorem 1stccn

Description: A mapping X --> Y , where X is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence f ( n ) converging to x , its image under F converges to F ( x ) . (Contributed by Mario Carneiro, 7-Sep-2015)

Ref Expression
Hypotheses 1stccnp.1 φ J 1 st 𝜔
1stccnp.2 φ J TopOn X
1stccnp.3 φ K TopOn Y
1stccn.7 φ F : X Y
Assertion 1stccn φ F J Cn K f f : X x f t J x F f t K F x

Proof

Step Hyp Ref Expression
1 1stccnp.1 φ J 1 st 𝜔
2 1stccnp.2 φ J TopOn X
3 1stccnp.3 φ K TopOn Y
4 1stccn.7 φ F : X Y
5 cncnp J TopOn X K TopOn Y F J Cn K F : X Y x X F J CnP K x
6 2 3 5 syl2anc φ F J Cn K F : X Y x X F J CnP K x
7 4 6 mpbirand φ F J Cn K x X F J CnP K x
8 4 adantr φ x X F : X Y
9 1 adantr φ x X J 1 st 𝜔
10 2 adantr φ x X J TopOn X
11 3 adantr φ x X K TopOn Y
12 simpr φ x X x X
13 9 10 11 12 1stccnp φ x X F J CnP K x F : X Y f f : X f t J x F f t K F x
14 8 13 mpbirand φ x X F J CnP K x f f : X f t J x F f t K F x
15 14 ralbidva φ x X F J CnP K x x X f f : X f t J x F f t K F x
16 ralcom4 x X f f : X f t J x F f t K F x f x X f : X f t J x F f t K F x
17 impexp f : X f t J x F f t K F x f : X f t J x F f t K F x
18 17 ralbii x X f : X f t J x F f t K F x x X f : X f t J x F f t K F x
19 r19.21v x X f : X f t J x F f t K F x f : X x X f t J x F f t K F x
20 18 19 bitri x X f : X f t J x F f t K F x f : X x X f t J x F f t K F x
21 df-ral x X f t J x F f t K F x x x X f t J x F f t K F x
22 lmcl J TopOn X f t J x x X
23 2 22 sylan φ f t J x x X
24 23 ex φ f t J x x X
25 24 pm4.71rd φ f t J x x X f t J x
26 25 imbi1d φ f t J x F f t K F x x X f t J x F f t K F x
27 impexp x X f t J x F f t K F x x X f t J x F f t K F x
28 26 27 syl6rbb φ x X f t J x F f t K F x f t J x F f t K F x
29 28 albidv φ x x X f t J x F f t K F x x f t J x F f t K F x
30 21 29 syl5bb φ x X f t J x F f t K F x x f t J x F f t K F x
31 30 imbi2d φ f : X x X f t J x F f t K F x f : X x f t J x F f t K F x
32 20 31 syl5bb φ x X f : X f t J x F f t K F x f : X x f t J x F f t K F x
33 32 albidv φ f x X f : X f t J x F f t K F x f f : X x f t J x F f t K F x
34 16 33 syl5bb φ x X f f : X f t J x F f t K F x f f : X x f t J x F f t K F x
35 7 15 34 3bitrd φ F J Cn K f f : X x f t J x F f t K F x