Metamath Proof Explorer


Theorem 1stccn

Description: A mapping X --> Y , where X is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence f ( n ) converging to x , its image under F converges to F ( x ) . (Contributed by Mario Carneiro, 7-Sep-2015)

Ref Expression
Hypotheses 1stccnp.1 φJ1st𝜔
1stccnp.2 φJTopOnX
1stccnp.3 φKTopOnY
1stccn.7 φF:XY
Assertion 1stccn φFJCnKff:XxftJxFftKFx

Proof

Step Hyp Ref Expression
1 1stccnp.1 φJ1st𝜔
2 1stccnp.2 φJTopOnX
3 1stccnp.3 φKTopOnY
4 1stccn.7 φF:XY
5 cncnp JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx
6 2 3 5 syl2anc φFJCnKF:XYxXFJCnPKx
7 4 6 mpbirand φFJCnKxXFJCnPKx
8 4 adantr φxXF:XY
9 1 adantr φxXJ1st𝜔
10 2 adantr φxXJTopOnX
11 3 adantr φxXKTopOnY
12 simpr φxXxX
13 9 10 11 12 1stccnp φxXFJCnPKxF:XYff:XftJxFftKFx
14 8 13 mpbirand φxXFJCnPKxff:XftJxFftKFx
15 14 ralbidva φxXFJCnPKxxXff:XftJxFftKFx
16 ralcom4 xXff:XftJxFftKFxfxXf:XftJxFftKFx
17 impexp f:XftJxFftKFxf:XftJxFftKFx
18 17 ralbii xXf:XftJxFftKFxxXf:XftJxFftKFx
19 r19.21v xXf:XftJxFftKFxf:XxXftJxFftKFx
20 18 19 bitri xXf:XftJxFftKFxf:XxXftJxFftKFx
21 df-ral xXftJxFftKFxxxXftJxFftKFx
22 lmcl JTopOnXftJxxX
23 2 22 sylan φftJxxX
24 23 ex φftJxxX
25 24 pm4.71rd φftJxxXftJx
26 25 imbi1d φftJxFftKFxxXftJxFftKFx
27 impexp xXftJxFftKFxxXftJxFftKFx
28 26 27 bitr2di φxXftJxFftKFxftJxFftKFx
29 28 albidv φxxXftJxFftKFxxftJxFftKFx
30 21 29 bitrid φxXftJxFftKFxxftJxFftKFx
31 30 imbi2d φf:XxXftJxFftKFxf:XxftJxFftKFx
32 20 31 bitrid φxXf:XftJxFftKFxf:XxftJxFftKFx
33 32 albidv φfxXf:XftJxFftKFxff:XxftJxFftKFx
34 16 33 bitrid φxXff:XftJxFftKFxff:XxftJxFftKFx
35 7 15 34 3bitrd φFJCnKff:XxftJxFftKFx