Metamath Proof Explorer


Theorem 1stcrestlem

Description: Lemma for 1stcrest . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion 1stcrestlem BωranxBCω

Proof

Step Hyp Ref Expression
1 ordom Ordω
2 reldom Rel
3 2 brrelex2i BωωV
4 elong ωVωOnOrdω
5 3 4 syl BωωOnOrdω
6 1 5 mpbiri BωωOn
7 ondomen ωOnBωBdomcard
8 6 7 mpancom BωBdomcard
9 eqid xBC=xBC
10 9 dmmptss domxBCB
11 ssnum BdomcarddomxBCBdomxBCdomcard
12 8 10 11 sylancl BωdomxBCdomcard
13 funmpt FunxBC
14 funforn FunxBCxBC:domxBContoranxBC
15 13 14 mpbi xBC:domxBContoranxBC
16 fodomnum domxBCdomcardxBC:domxBContoranxBCranxBCdomxBC
17 12 15 16 mpisyl BωranxBCdomxBC
18 ctex BωBV
19 ssdomg BVdomxBCBdomxBCB
20 18 10 19 mpisyl BωdomxBCB
21 domtr domxBCBBωdomxBCω
22 20 21 mpancom BωdomxBCω
23 domtr ranxBCdomxBCdomxBCωranxBCω
24 17 22 23 syl2anc BωranxBCω