Metamath Proof Explorer


Theorem 1stcrest

Description: A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion 1stcrest J1st𝜔AVJ𝑡A1st𝜔

Proof

Step Hyp Ref Expression
1 1stctop J1st𝜔JTop
2 resttop JTopAVJ𝑡ATop
3 1 2 sylan J1st𝜔AVJ𝑡ATop
4 eqid J=J
5 4 restuni2 JTopAVAJ=J𝑡A
6 1 5 sylan J1st𝜔AVAJ=J𝑡A
7 6 eleq2d J1st𝜔AVxAJxJ𝑡A
8 7 biimpar J1st𝜔AVxJ𝑡AxAJ
9 simpl J1st𝜔AVJ1st𝜔
10 elinel2 xAJxJ
11 4 1stcclb J1st𝜔xJt𝒫JtωaJxaytxyya
12 9 10 11 syl2an J1st𝜔AVxAJt𝒫JtωaJxaytxyya
13 simplll J1st𝜔AVxAJt𝒫JtωaJxaytxyyaJ1st𝜔
14 elpwi t𝒫JtJ
15 14 ad2antrl J1st𝜔AVxAJt𝒫JtωaJxaytxyyatJ
16 ssrest J1st𝜔tJt𝑡AJ𝑡A
17 13 15 16 syl2anc J1st𝜔AVxAJt𝒫JtωaJxaytxyyat𝑡AJ𝑡A
18 ovex J𝑡AV
19 18 elpw2 t𝑡A𝒫J𝑡At𝑡AJ𝑡A
20 17 19 sylibr J1st𝜔AVxAJt𝒫JtωaJxaytxyyat𝑡A𝒫J𝑡A
21 vex tV
22 simpllr J1st𝜔AVxAJt𝒫JtωaJxaytxyyaAV
23 restval tVAVt𝑡A=ranvtvA
24 21 22 23 sylancr J1st𝜔AVxAJt𝒫JtωaJxaytxyyat𝑡A=ranvtvA
25 simprrl J1st𝜔AVxAJt𝒫JtωaJxaytxyyatω
26 1stcrestlem tωranvtvAω
27 25 26 syl J1st𝜔AVxAJt𝒫JtωaJxaytxyyaranvtvAω
28 24 27 eqbrtrd J1st𝜔AVxAJt𝒫JtωaJxaytxyyat𝑡Aω
29 1 ad3antrrr J1st𝜔AVxAJt𝒫JtωaJxaytxyyaJTop
30 elrest JTopAVzJ𝑡AaJz=aA
31 29 22 30 syl2anc J1st𝜔AVxAJt𝒫JtωaJxaytxyyazJ𝑡AaJz=aA
32 r19.29 aJxaytxyyaaJz=aAaJxaytxyyaz=aA
33 simprr J1st𝜔AVxAJt𝒫JaJxAxA
34 33 a1d J1st𝜔AVxAJt𝒫JaJxAxyxA
35 34 ancld J1st𝜔AVxAJt𝒫JaJxAxyxyxA
36 elin xyAxyxA
37 35 36 imbitrrdi J1st𝜔AVxAJt𝒫JaJxAxyxyA
38 ssrin yayAaA
39 37 38 anim12d1 J1st𝜔AVxAJt𝒫JaJxAxyyaxyAyAaA
40 39 reximdv J1st𝜔AVxAJt𝒫JaJxAytxyyaytxyAyAaA
41 vex yV
42 41 inex1 yAV
43 42 a1i J1st𝜔AVxAJt𝒫JaJxAytyAV
44 simp-4r J1st𝜔AVxAJt𝒫JaJxAAV
45 elrest tVAVwt𝑡Aytw=yA
46 21 44 45 sylancr J1st𝜔AVxAJt𝒫JaJxAwt𝑡Aytw=yA
47 eleq2 w=yAxwxyA
48 sseq1 w=yAwaAyAaA
49 47 48 anbi12d w=yAxwwaAxyAyAaA
50 49 adantl J1st𝜔AVxAJt𝒫JaJxAw=yAxwwaAxyAyAaA
51 43 46 50 rexxfr2d J1st𝜔AVxAJt𝒫JaJxAwt𝑡AxwwaAytxyAyAaA
52 40 51 sylibrd J1st𝜔AVxAJt𝒫JaJxAytxyyawt𝑡AxwwaA
53 52 expr J1st𝜔AVxAJt𝒫JaJxAytxyyawt𝑡AxwwaA
54 53 com23 J1st𝜔AVxAJt𝒫JaJytxyyaxAwt𝑡AxwwaA
55 54 imim2d J1st𝜔AVxAJt𝒫JaJxaytxyyaxaxAwt𝑡AxwwaA
56 55 imp4b J1st𝜔AVxAJt𝒫JaJxaytxyyaxaxAwt𝑡AxwwaA
57 eleq2 z=aAxzxaA
58 elin xaAxaxA
59 57 58 bitrdi z=aAxzxaxA
60 sseq2 z=aAwzwaA
61 60 anbi2d z=aAxwwzxwwaA
62 61 rexbidv z=aAwt𝑡Axwwzwt𝑡AxwwaA
63 59 62 imbi12d z=aAxzwt𝑡AxwwzxaxAwt𝑡AxwwaA
64 56 63 syl5ibrcom J1st𝜔AVxAJt𝒫JaJxaytxyyaz=aAxzwt𝑡Axwwz
65 64 expimpd J1st𝜔AVxAJt𝒫JaJxaytxyyaz=aAxzwt𝑡Axwwz
66 65 rexlimdva J1st𝜔AVxAJt𝒫JaJxaytxyyaz=aAxzwt𝑡Axwwz
67 32 66 syl5 J1st𝜔AVxAJt𝒫JaJxaytxyyaaJz=aAxzwt𝑡Axwwz
68 67 expd J1st𝜔AVxAJt𝒫JaJxaytxyyaaJz=aAxzwt𝑡Axwwz
69 68 impr J1st𝜔AVxAJt𝒫JaJxaytxyyaaJz=aAxzwt𝑡Axwwz
70 69 adantrrl J1st𝜔AVxAJt𝒫JtωaJxaytxyyaaJz=aAxzwt𝑡Axwwz
71 31 70 sylbid J1st𝜔AVxAJt𝒫JtωaJxaytxyyazJ𝑡Axzwt𝑡Axwwz
72 71 ralrimiv J1st𝜔AVxAJt𝒫JtωaJxaytxyyazJ𝑡Axzwt𝑡Axwwz
73 breq1 y=t𝑡Ayωt𝑡Aω
74 rexeq y=t𝑡Awyxwwzwt𝑡Axwwz
75 74 imbi2d y=t𝑡Axzwyxwwzxzwt𝑡Axwwz
76 75 ralbidv y=t𝑡AzJ𝑡AxzwyxwwzzJ𝑡Axzwt𝑡Axwwz
77 73 76 anbi12d y=t𝑡AyωzJ𝑡Axzwyxwwzt𝑡AωzJ𝑡Axzwt𝑡Axwwz
78 77 rspcev t𝑡A𝒫J𝑡At𝑡AωzJ𝑡Axzwt𝑡Axwwzy𝒫J𝑡AyωzJ𝑡Axzwyxwwz
79 20 28 72 78 syl12anc J1st𝜔AVxAJt𝒫JtωaJxaytxyyay𝒫J𝑡AyωzJ𝑡Axzwyxwwz
80 12 79 rexlimddv J1st𝜔AVxAJy𝒫J𝑡AyωzJ𝑡Axzwyxwwz
81 8 80 syldan J1st𝜔AVxJ𝑡Ay𝒫J𝑡AyωzJ𝑡Axzwyxwwz
82 81 ralrimiva J1st𝜔AVxJ𝑡Ay𝒫J𝑡AyωzJ𝑡Axzwyxwwz
83 eqid J𝑡A=J𝑡A
84 83 is1stc2 J𝑡A1st𝜔J𝑡ATopxJ𝑡Ay𝒫J𝑡AyωzJ𝑡Axzwyxwwz
85 3 82 84 sylanbrc J1st𝜔AVJ𝑡A1st𝜔