Metamath Proof Explorer


Theorem 1vwmgr

Description: Every graph with one vertex (which may be connect with itself by (multiple) loops!) is a windmill graph. (Contributed by Alexander van der Vekens, 5-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Assertion 1vwmgr AXV=AhVvVhvhE∃!wVhvwE

Proof

Step Hyp Ref Expression
1 ral0 vvAE∃!wAAvwE
2 sneq h=Ah=A
3 2 difeq2d h=AAh=AA
4 difid AA=
5 3 4 eqtrdi h=AAh=
6 preq2 h=Avh=vA
7 6 eleq1d h=AvhEvAE
8 reueq1 Ah=AA∃!wAhvwE∃!wAAvwE
9 3 8 syl h=A∃!wAhvwE∃!wAAvwE
10 7 9 anbi12d h=AvhE∃!wAhvwEvAE∃!wAAvwE
11 5 10 raleqbidv h=AvAhvhE∃!wAhvwEvvAE∃!wAAvwE
12 11 rexsng AXhAvAhvhE∃!wAhvwEvvAE∃!wAAvwE
13 1 12 mpbiri AXhAvAhvhE∃!wAhvwE
14 13 adantr AXV=AhAvAhvhE∃!wAhvwE
15 difeq1 V=AVh=Ah
16 reueq1 Vh=Ah∃!wVhvwE∃!wAhvwE
17 15 16 syl V=A∃!wVhvwE∃!wAhvwE
18 17 anbi2d V=AvhE∃!wVhvwEvhE∃!wAhvwE
19 15 18 raleqbidv V=AvVhvhE∃!wVhvwEvAhvhE∃!wAhvwE
20 19 rexeqbi1dv V=AhVvVhvhE∃!wVhvwEhAvAhvhE∃!wAhvwE
21 20 adantl AXV=AhVvVhvhE∃!wVhvwEhAvAhvhE∃!wAhvwE
22 14 21 mpbird AXV=AhVvVhvhE∃!wVhvwE