Metamath Proof Explorer


Theorem 2arwcatlem1

Description: Lemma for 2arwcat . (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypothesis 2arwcatlem1.x X H X = 0 ˙ 1 ˙
Assertion 2arwcatlem1 x = X y = X z = X w = X f = 0 ˙ f = 1 ˙ g = 0 ˙ g = 1 ˙ k = 0 ˙ k = 1 ˙ x X y X z X w X f x H y g y H z k z H w

Proof

Step Hyp Ref Expression
1 2arwcatlem1.x X H X = 0 ˙ 1 ˙
2 df-3an x X y X z X w X f x H y g y H z k z H w x X y X z X w X f x H y g y H z k z H w
3 velsn x X x = X
4 velsn y X y = X
5 3 4 anbi12i x X y X x = X y = X
6 velsn z X z = X
7 velsn w X w = X
8 6 7 anbi12i z X w X z = X w = X
9 5 8 anbi12i x X y X z X w X x = X y = X z = X w = X
10 9 anbi1i x X y X z X w X f x H y g y H z k z H w x = X y = X z = X w = X f x H y g y H z k z H w
11 simpll x = X y = X z = X w = X x = X
12 simplr x = X y = X z = X w = X y = X
13 11 12 oveq12d x = X y = X z = X w = X x H y = X H X
14 13 1 eqtrdi x = X y = X z = X w = X x H y = 0 ˙ 1 ˙
15 14 eleq2d x = X y = X z = X w = X f x H y f 0 ˙ 1 ˙
16 simprl x = X y = X z = X w = X z = X
17 12 16 oveq12d x = X y = X z = X w = X y H z = X H X
18 17 1 eqtrdi x = X y = X z = X w = X y H z = 0 ˙ 1 ˙
19 18 eleq2d x = X y = X z = X w = X g y H z g 0 ˙ 1 ˙
20 simprr x = X y = X z = X w = X w = X
21 16 20 oveq12d x = X y = X z = X w = X z H w = X H X
22 21 1 eqtrdi x = X y = X z = X w = X z H w = 0 ˙ 1 ˙
23 22 eleq2d x = X y = X z = X w = X k z H w k 0 ˙ 1 ˙
24 15 19 23 3anbi123d x = X y = X z = X w = X f x H y g y H z k z H w f 0 ˙ 1 ˙ g 0 ˙ 1 ˙ k 0 ˙ 1 ˙
25 vex f V
26 25 elpr f 0 ˙ 1 ˙ f = 0 ˙ f = 1 ˙
27 vex g V
28 27 elpr g 0 ˙ 1 ˙ g = 0 ˙ g = 1 ˙
29 vex k V
30 29 elpr k 0 ˙ 1 ˙ k = 0 ˙ k = 1 ˙
31 26 28 30 3anbi123i f 0 ˙ 1 ˙ g 0 ˙ 1 ˙ k 0 ˙ 1 ˙ f = 0 ˙ f = 1 ˙ g = 0 ˙ g = 1 ˙ k = 0 ˙ k = 1 ˙
32 24 31 bitrdi x = X y = X z = X w = X f x H y g y H z k z H w f = 0 ˙ f = 1 ˙ g = 0 ˙ g = 1 ˙ k = 0 ˙ k = 1 ˙
33 32 pm5.32i x = X y = X z = X w = X f x H y g y H z k z H w x = X y = X z = X w = X f = 0 ˙ f = 1 ˙ g = 0 ˙ g = 1 ˙ k = 0 ˙ k = 1 ˙
34 2 10 33 3bitrri x = X y = X z = X w = X f = 0 ˙ f = 1 ˙ g = 0 ˙ g = 1 ˙ k = 0 ˙ k = 1 ˙ x X y X z X w X f x H y g y H z k z H w