Metamath Proof Explorer


Theorem 2arympt

Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024)

Ref Expression
Hypothesis 2arympt.f F=xX01x0Ox1
Assertion 2arympt Could not format assertion : No typesetting found for |- ( ( X e. V /\ O : ( X X. X ) --> X ) -> F e. ( 2 -aryF X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 2arympt.f F=xX01x0Ox1
2 simplr XVO:X×XXxX01O:X×XX
3 elmapi xX01x:01X
4 c0ex 0V
5 4 prid1 001
6 5 a1i xX01001
7 3 6 ffvelcdmd xX01x0X
8 7 adantl XVO:X×XXxX01x0X
9 1ex 1V
10 9 prid2 101
11 10 a1i xX01101
12 3 11 ffvelcdmd xX01x1X
13 12 adantl XVO:X×XXxX01x1X
14 2 8 13 fovcdmd XVO:X×XXxX01x0Ox1X
15 14 1 fmptd XVO:X×XXF:X01X
16 2aryfvalel Could not format ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) : No typesetting found for |- ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) with typecode |-
17 16 adantr Could not format ( ( X e. V /\ O : ( X X. X ) --> X ) -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) : No typesetting found for |- ( ( X e. V /\ O : ( X X. X ) --> X ) -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) with typecode |-
18 15 17 mpbird Could not format ( ( X e. V /\ O : ( X X. X ) --> X ) -> F e. ( 2 -aryF X ) ) : No typesetting found for |- ( ( X e. V /\ O : ( X X. X ) --> X ) -> F e. ( 2 -aryF X ) ) with typecode |-