Metamath Proof Explorer


Theorem 2clwwlklem

Description: Lemma for clwwnonrepclwwnon and extwwlkfab . (Contributed by Alexander van der Vekens, 18-Sep-2018) (Revised by AV, 10-May-2022) (Revised by AV, 30-Oct-2022)

Ref Expression
Assertion 2clwwlklem WNClWWalksNGN3WprefixN20=W0

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 clwwlknwrd WNClWWalksNGWWordVtxG
3 ige3m2fz N3N21N
4 3 adantl WNClWWalksNGN3N21N
5 clwwlknlen WNClWWalksNGW=N
6 5 oveq2d WNClWWalksNG1W=1N
7 6 eleq2d WNClWWalksNGN21WN21N
8 7 adantr WNClWWalksNGN3N21WN21N
9 4 8 mpbird WNClWWalksNGN3N21W
10 pfxfv0 WWordVtxGN21WWprefixN20=W0
11 2 9 10 syl2an2r WNClWWalksNGN3WprefixN20=W0