Metamath Proof Explorer


Theorem 2itscplem2

Description: Lemma 2 for 2itscp . (Contributed by AV, 4-Mar-2023)

Ref Expression
Hypotheses 2itscp.a φA
2itscp.b φB
2itscp.x φX
2itscp.y φY
2itscp.d D=XA
2itscp.e E=BY
2itscp.c C=DB+EA
Assertion 2itscplem2 φC2=D2B2+2DAEB+E2A2

Proof

Step Hyp Ref Expression
1 2itscp.a φA
2 2itscp.b φB
3 2itscp.x φX
4 2itscp.y φY
5 2itscp.d D=XA
6 2itscp.e E=BY
7 2itscp.c C=DB+EA
8 7 oveq1i C2=DB+EA2
9 8 a1i φC2=DB+EA2
10 3 recnd φX
11 1 recnd φA
12 10 11 subcld φXA
13 5 12 eqeltrid φD
14 2 recnd φB
15 13 14 mulcld φDB
16 4 recnd φY
17 14 16 subcld φBY
18 6 17 eqeltrid φE
19 18 11 mulcld φEA
20 binom2 DBEADB+EA2=DB2+2DBEA+EA2
21 15 19 20 syl2anc φDB+EA2=DB2+2DBEA+EA2
22 13 14 sqmuld φDB2=D2B2
23 mul4r DBEADBEA=DAEB
24 13 14 18 11 23 syl22anc φDBEA=DAEB
25 24 oveq2d φ2DBEA=2DAEB
26 22 25 oveq12d φDB2+2DBEA=D2B2+2DAEB
27 18 11 sqmuld φEA2=E2A2
28 26 27 oveq12d φDB2+2DBEA+EA2=D2B2+2DAEB+E2A2
29 9 21 28 3eqtrd φC2=D2B2+2DAEB+E2A2