Description: Lemma 2 for 2itscp . (Contributed by AV, 4-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2itscp.a | |
|
2itscp.b | |
||
2itscp.x | |
||
2itscp.y | |
||
2itscp.d | |
||
2itscp.e | |
||
2itscp.c | |
||
Assertion | 2itscplem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2itscp.a | |
|
2 | 2itscp.b | |
|
3 | 2itscp.x | |
|
4 | 2itscp.y | |
|
5 | 2itscp.d | |
|
6 | 2itscp.e | |
|
7 | 2itscp.c | |
|
8 | 7 | oveq1i | |
9 | 8 | a1i | |
10 | 3 | recnd | |
11 | 1 | recnd | |
12 | 10 11 | subcld | |
13 | 5 12 | eqeltrid | |
14 | 2 | recnd | |
15 | 13 14 | mulcld | |
16 | 4 | recnd | |
17 | 14 16 | subcld | |
18 | 6 17 | eqeltrid | |
19 | 18 11 | mulcld | |
20 | binom2 | |
|
21 | 15 19 20 | syl2anc | |
22 | 13 14 | sqmuld | |
23 | mul4r | |
|
24 | 13 14 18 11 23 | syl22anc | |
25 | 24 | oveq2d | |
26 | 22 25 | oveq12d | |
27 | 18 11 | sqmuld | |
28 | 26 27 | oveq12d | |
29 | 9 21 28 | 3eqtrd | |