Metamath Proof Explorer


Theorem 2lgslem2

Description: Lemma 2 for 2lgs . (Contributed by AV, 20-Jun-2021)

Ref Expression
Hypothesis 2lgslem2.n N=P12P4
Assertion 2lgslem2 P¬2PN

Proof

Step Hyp Ref Expression
1 2lgslem2.n N=P12P4
2 simpl P¬2PP
3 elsng PP2P=2
4 z2even 22
5 breq2 P=22P22
6 4 5 mpbiri P=22P
7 3 6 syl6bi PP22P
8 7 con3dimp P¬2P¬P2
9 2 8 eldifd P¬2PP2
10 oddprm P2P12
11 10 nnzd P2P12
12 9 11 syl P¬2PP12
13 prmz PP
14 13 zred PP
15 4re 4
16 15 a1i P4
17 4ne0 40
18 17 a1i P40
19 14 16 18 redivcld PP4
20 19 flcld PP4
21 20 adantr P¬2PP4
22 12 21 zsubcld P¬2PP12P4
23 1 22 eqeltrid P¬2PN