| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prm2orodd |
|
| 2 |
|
2lgslem4 |
|
| 3 |
2
|
a1i |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
|
oveq1 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
3 5 7
|
3bitr4d |
|
| 9 |
8
|
a1d |
|
| 10 |
|
2prm |
|
| 11 |
|
prmnn |
|
| 12 |
|
dvdsprime |
|
| 13 |
10 11 12
|
sylancr |
|
| 14 |
|
z2even |
|
| 15 |
|
breq2 |
|
| 16 |
14 15
|
mpbiri |
|
| 17 |
16
|
a1d |
|
| 18 |
|
eleq1 |
|
| 19 |
|
1nprm |
|
| 20 |
19
|
pm2.21i |
|
| 21 |
18 20
|
biimtrdi |
|
| 22 |
17 21
|
jaoi |
|
| 23 |
22
|
com12 |
|
| 24 |
13 23
|
sylbid |
|
| 25 |
24
|
con3dimp |
|
| 26 |
|
2z |
|
| 27 |
25 26
|
jctil |
|
| 28 |
|
2lgslem1 |
|
| 29 |
28
|
eqcomd |
|
| 30 |
|
nnoddn2prmb |
|
| 31 |
30
|
biimpri |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
32 33 34 35 36
|
gausslemma2d |
|
| 38 |
37
|
eqeq1d |
|
| 39 |
27 29 38
|
mpd3an23 |
|
| 40 |
36
|
2lgslem2 |
|
| 41 |
|
m1exp1 |
|
| 42 |
40 41
|
syl |
|
| 43 |
|
2nn |
|
| 44 |
|
dvdsval3 |
|
| 45 |
43 40 44
|
sylancr |
|
| 46 |
36
|
2lgslem3 |
|
| 47 |
11 46
|
sylan |
|
| 48 |
47
|
eqeq1d |
|
| 49 |
|
ax-1 |
|
| 50 |
|
iffalse |
|
| 51 |
50
|
eqeq1d |
|
| 52 |
|
ax-1ne0 |
|
| 53 |
|
eqneqall |
|
| 54 |
52 53
|
mpi |
|
| 55 |
51 54
|
biimtrdi |
|
| 56 |
49 55
|
pm2.61i |
|
| 57 |
|
iftrue |
|
| 58 |
56 57
|
impbii |
|
| 59 |
58
|
a1i |
|
| 60 |
45 48 59
|
3bitrd |
|
| 61 |
39 42 60
|
3bitrd |
|
| 62 |
61
|
expcom |
|
| 63 |
9 62
|
jaoi |
|
| 64 |
1 63
|
mpcom |
|