Metamath Proof Explorer


Theorem 2lgslem4

Description: Lemma 4 for 2lgs : special case of 2lgs for P = 2 . (Contributed by AV, 20-Jun-2021)

Ref Expression
Assertion 2lgslem4 2/L2=12mod817

Proof

Step Hyp Ref Expression
1 2lgs2 2/L2=0
2 1 eqeq1i 2/L2=10=1
3 0ne1 01
4 3 neii ¬0=1
5 1ne2 12
6 5 nesymi ¬2=1
7 2re 2
8 2lt7 2<7
9 7 8 ltneii 27
10 9 neii ¬2=7
11 6 10 pm3.2ni ¬2=12=7
12 4 11 2false 0=12=12=7
13 8nn 8
14 nnrp 88+
15 13 14 ax-mp 8+
16 0le2 02
17 2lt8 2<8
18 modid 28+022<82mod8=2
19 7 15 16 17 18 mp4an 2mod8=2
20 19 eleq1i 2mod817217
21 2ex 2V
22 21 elpr 2172=12=7
23 20 22 bitr2i 2=12=72mod817
24 2 12 23 3bitri 2/L2=12mod817