| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgs2 | ⊢ ( 2  /L  2 )  =  0 | 
						
							| 2 | 1 | eqeq1i | ⊢ ( ( 2  /L  2 )  =  1  ↔  0  =  1 ) | 
						
							| 3 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 4 | 3 | neii | ⊢ ¬  0  =  1 | 
						
							| 5 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 6 | 5 | nesymi | ⊢ ¬  2  =  1 | 
						
							| 7 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 8 |  | 2lt7 | ⊢ 2  <  7 | 
						
							| 9 | 7 8 | ltneii | ⊢ 2  ≠  7 | 
						
							| 10 | 9 | neii | ⊢ ¬  2  =  7 | 
						
							| 11 | 6 10 | pm3.2ni | ⊢ ¬  ( 2  =  1  ∨  2  =  7 ) | 
						
							| 12 | 4 11 | 2false | ⊢ ( 0  =  1  ↔  ( 2  =  1  ∨  2  =  7 ) ) | 
						
							| 13 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 14 |  | nnrp | ⊢ ( 8  ∈  ℕ  →  8  ∈  ℝ+ ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ 8  ∈  ℝ+ | 
						
							| 16 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 17 |  | 2lt8 | ⊢ 2  <  8 | 
						
							| 18 |  | modid | ⊢ ( ( ( 2  ∈  ℝ  ∧  8  ∈  ℝ+ )  ∧  ( 0  ≤  2  ∧  2  <  8 ) )  →  ( 2  mod  8 )  =  2 ) | 
						
							| 19 | 7 15 16 17 18 | mp4an | ⊢ ( 2  mod  8 )  =  2 | 
						
							| 20 | 19 | eleq1i | ⊢ ( ( 2  mod  8 )  ∈  { 1 ,  7 }  ↔  2  ∈  { 1 ,  7 } ) | 
						
							| 21 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 22 | 21 | elpr | ⊢ ( 2  ∈  { 1 ,  7 }  ↔  ( 2  =  1  ∨  2  =  7 ) ) | 
						
							| 23 | 20 22 | bitr2i | ⊢ ( ( 2  =  1  ∨  2  =  7 )  ↔  ( 2  mod  8 )  ∈  { 1 ,  7 } ) | 
						
							| 24 | 2 12 23 | 3bitri | ⊢ ( ( 2  /L  2 )  =  1  ↔  ( 2  mod  8 )  ∈  { 1 ,  7 } ) |