| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgs2 |  |-  ( 2 /L 2 ) = 0 | 
						
							| 2 | 1 | eqeq1i |  |-  ( ( 2 /L 2 ) = 1 <-> 0 = 1 ) | 
						
							| 3 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 4 | 3 | neii |  |-  -. 0 = 1 | 
						
							| 5 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 6 | 5 | nesymi |  |-  -. 2 = 1 | 
						
							| 7 |  | 2re |  |-  2 e. RR | 
						
							| 8 |  | 2lt7 |  |-  2 < 7 | 
						
							| 9 | 7 8 | ltneii |  |-  2 =/= 7 | 
						
							| 10 | 9 | neii |  |-  -. 2 = 7 | 
						
							| 11 | 6 10 | pm3.2ni |  |-  -. ( 2 = 1 \/ 2 = 7 ) | 
						
							| 12 | 4 11 | 2false |  |-  ( 0 = 1 <-> ( 2 = 1 \/ 2 = 7 ) ) | 
						
							| 13 |  | 8nn |  |-  8 e. NN | 
						
							| 14 |  | nnrp |  |-  ( 8 e. NN -> 8 e. RR+ ) | 
						
							| 15 | 13 14 | ax-mp |  |-  8 e. RR+ | 
						
							| 16 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 17 |  | 2lt8 |  |-  2 < 8 | 
						
							| 18 |  | modid |  |-  ( ( ( 2 e. RR /\ 8 e. RR+ ) /\ ( 0 <_ 2 /\ 2 < 8 ) ) -> ( 2 mod 8 ) = 2 ) | 
						
							| 19 | 7 15 16 17 18 | mp4an |  |-  ( 2 mod 8 ) = 2 | 
						
							| 20 | 19 | eleq1i |  |-  ( ( 2 mod 8 ) e. { 1 , 7 } <-> 2 e. { 1 , 7 } ) | 
						
							| 21 |  | 2ex |  |-  2 e. _V | 
						
							| 22 | 21 | elpr |  |-  ( 2 e. { 1 , 7 } <-> ( 2 = 1 \/ 2 = 7 ) ) | 
						
							| 23 | 20 22 | bitr2i |  |-  ( ( 2 = 1 \/ 2 = 7 ) <-> ( 2 mod 8 ) e. { 1 , 7 } ) | 
						
							| 24 | 2 12 23 | 3bitri |  |-  ( ( 2 /L 2 ) = 1 <-> ( 2 mod 8 ) e. { 1 , 7 } ) |