Metamath Proof Explorer


Theorem 2lgslem1

Description: Lemma 1 for 2lgs . (Contributed by AV, 19-Jun-2021)

Ref Expression
Assertion 2lgslem1 P¬2Px|i1P12x=i2P2<xmodP=P12P4

Proof

Step Hyp Ref Expression
1 2lgslem1a P¬2Px|i1P12x=i2P2<xmodP=x|iP4+1P12x=i2
2 1 fveq2d P¬2Px|i1P12x=i2P2<xmodP=x|iP4+1P12x=i2
3 ovex P4+1P12V
4 3 mptex yP4+1P12y2V
5 f1oeq1 f=yP4+1P12y2f:P4+1P121-1 ontox|iP4+1P12x=i2yP4+1P12y2:P4+1P121-1 ontox|iP4+1P12x=i2
6 eqid P4+1P12=P4+1P12
7 eqid yP4+1P12y2=yP4+1P12y2
8 6 7 2lgslem1b yP4+1P12y2:P4+1P121-1 ontox|iP4+1P12x=i2
9 4 5 8 ceqsexv2d ff:P4+1P121-1 ontox|iP4+1P12x=i2
10 9 a1i P¬2Pff:P4+1P121-1 ontox|iP4+1P12x=i2
11 hasheqf1oi P4+1P12Vff:P4+1P121-1 ontox|iP4+1P12x=i2P4+1P12=x|iP4+1P12x=i2
12 3 10 11 mpsyl P¬2PP4+1P12=x|iP4+1P12x=i2
13 prmz PP
14 13 zred PP
15 4re 4
16 15 a1i P4
17 4ne0 40
18 17 a1i P40
19 14 16 18 redivcld PP4
20 19 flcld PP4
21 20 adantr P¬2PP4
22 oddm1d2 P¬2PP12
23 13 22 syl P¬2PP12
24 23 biimpa P¬2PP12
25 2lgslem1c P¬2PP4P12
26 eluz2 P12P4P4P12P4P12
27 21 24 25 26 syl3anbrc P¬2PP12P4
28 hashfzp1 P12P4P4+1P12=P12P4
29 27 28 syl P¬2PP4+1P12=P12P4
30 2 12 29 3eqtr2d P¬2Px|i1P12x=i2P2<xmodP=P12P4