| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn |  | 
						
							| 2 |  | nnnn0 |  | 
						
							| 3 |  | oddnn02np1 |  | 
						
							| 4 | 1 2 3 | 3syl |  | 
						
							| 5 |  | iftrue |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | 2nn |  | 
						
							| 8 |  | nn0ledivnn |  | 
						
							| 9 | 7 8 | mpan2 |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 6 10 | eqbrtrd |  | 
						
							| 12 |  | iffalse |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | nn0re |  | 
						
							| 15 |  | peano2rem |  | 
						
							| 16 | 15 | rehalfcld |  | 
						
							| 17 | 14 16 | syl |  | 
						
							| 18 | 14 | rehalfcld |  | 
						
							| 19 | 14 | lem1d |  | 
						
							| 20 | 14 15 | syl |  | 
						
							| 21 |  | 2re |  | 
						
							| 22 |  | 2pos |  | 
						
							| 23 | 21 22 | pm3.2i |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 |  | lediv1 |  | 
						
							| 26 | 20 14 24 25 | syl3anc |  | 
						
							| 27 | 19 26 | mpbid |  | 
						
							| 28 | 17 18 14 27 9 | letrd |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 | 13 29 | eqbrtrd |  | 
						
							| 31 | 11 30 | pm2.61ian |  | 
						
							| 32 | 31 | ad2antlr |  | 
						
							| 33 |  | nn0z |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 |  | eqcom |  | 
						
							| 36 | 35 | biimpi |  | 
						
							| 37 |  | flodddiv4 |  | 
						
							| 38 | 34 36 37 | syl2an |  | 
						
							| 39 |  | oveq1 |  | 
						
							| 40 | 39 | eqcoms |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 |  | 2nn0 |  | 
						
							| 43 | 42 | a1i |  | 
						
							| 44 |  | id |  | 
						
							| 45 | 43 44 | nn0mulcld |  | 
						
							| 46 | 45 | nn0cnd |  | 
						
							| 47 |  | pncan1 |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 48 | ad2antlr |  | 
						
							| 50 | 41 49 | eqtrd |  | 
						
							| 51 | 50 | oveq1d |  | 
						
							| 52 |  | nn0cn |  | 
						
							| 53 |  | 2cnd |  | 
						
							| 54 |  | 2ne0 |  | 
						
							| 55 | 54 | a1i |  | 
						
							| 56 | 52 53 55 | divcan3d |  | 
						
							| 57 | 56 | ad2antlr |  | 
						
							| 58 | 51 57 | eqtrd |  | 
						
							| 59 | 32 38 58 | 3brtr4d |  | 
						
							| 60 | 59 | rexlimdva2 |  | 
						
							| 61 | 4 60 | sylbid |  | 
						
							| 62 | 61 | imp |  |