| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 2 |  | nnnn0 |  |-  ( P e. NN -> P e. NN0 ) | 
						
							| 3 |  | oddnn02np1 |  |-  ( P e. NN0 -> ( -. 2 || P <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = P ) ) | 
						
							| 4 | 1 2 3 | 3syl |  |-  ( P e. Prime -> ( -. 2 || P <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = P ) ) | 
						
							| 5 |  | iftrue |  |-  ( 2 || n -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) = ( n / 2 ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( 2 || n /\ n e. NN0 ) -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) = ( n / 2 ) ) | 
						
							| 7 |  | 2nn |  |-  2 e. NN | 
						
							| 8 |  | nn0ledivnn |  |-  ( ( n e. NN0 /\ 2 e. NN ) -> ( n / 2 ) <_ n ) | 
						
							| 9 | 7 8 | mpan2 |  |-  ( n e. NN0 -> ( n / 2 ) <_ n ) | 
						
							| 10 | 9 | adantl |  |-  ( ( 2 || n /\ n e. NN0 ) -> ( n / 2 ) <_ n ) | 
						
							| 11 | 6 10 | eqbrtrd |  |-  ( ( 2 || n /\ n e. NN0 ) -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) <_ n ) | 
						
							| 12 |  | iffalse |  |-  ( -. 2 || n -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) = ( ( n - 1 ) / 2 ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( -. 2 || n /\ n e. NN0 ) -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) = ( ( n - 1 ) / 2 ) ) | 
						
							| 14 |  | nn0re |  |-  ( n e. NN0 -> n e. RR ) | 
						
							| 15 |  | peano2rem |  |-  ( n e. RR -> ( n - 1 ) e. RR ) | 
						
							| 16 | 15 | rehalfcld |  |-  ( n e. RR -> ( ( n - 1 ) / 2 ) e. RR ) | 
						
							| 17 | 14 16 | syl |  |-  ( n e. NN0 -> ( ( n - 1 ) / 2 ) e. RR ) | 
						
							| 18 | 14 | rehalfcld |  |-  ( n e. NN0 -> ( n / 2 ) e. RR ) | 
						
							| 19 | 14 | lem1d |  |-  ( n e. NN0 -> ( n - 1 ) <_ n ) | 
						
							| 20 | 14 15 | syl |  |-  ( n e. NN0 -> ( n - 1 ) e. RR ) | 
						
							| 21 |  | 2re |  |-  2 e. RR | 
						
							| 22 |  | 2pos |  |-  0 < 2 | 
						
							| 23 | 21 22 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 24 | 23 | a1i |  |-  ( n e. NN0 -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 25 |  | lediv1 |  |-  ( ( ( n - 1 ) e. RR /\ n e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( n - 1 ) <_ n <-> ( ( n - 1 ) / 2 ) <_ ( n / 2 ) ) ) | 
						
							| 26 | 20 14 24 25 | syl3anc |  |-  ( n e. NN0 -> ( ( n - 1 ) <_ n <-> ( ( n - 1 ) / 2 ) <_ ( n / 2 ) ) ) | 
						
							| 27 | 19 26 | mpbid |  |-  ( n e. NN0 -> ( ( n - 1 ) / 2 ) <_ ( n / 2 ) ) | 
						
							| 28 | 17 18 14 27 9 | letrd |  |-  ( n e. NN0 -> ( ( n - 1 ) / 2 ) <_ n ) | 
						
							| 29 | 28 | adantl |  |-  ( ( -. 2 || n /\ n e. NN0 ) -> ( ( n - 1 ) / 2 ) <_ n ) | 
						
							| 30 | 13 29 | eqbrtrd |  |-  ( ( -. 2 || n /\ n e. NN0 ) -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) <_ n ) | 
						
							| 31 | 11 30 | pm2.61ian |  |-  ( n e. NN0 -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) <_ n ) | 
						
							| 32 | 31 | ad2antlr |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) <_ n ) | 
						
							| 33 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 34 | 33 | adantl |  |-  ( ( P e. Prime /\ n e. NN0 ) -> n e. ZZ ) | 
						
							| 35 |  | eqcom |  |-  ( ( ( 2 x. n ) + 1 ) = P <-> P = ( ( 2 x. n ) + 1 ) ) | 
						
							| 36 | 35 | biimpi |  |-  ( ( ( 2 x. n ) + 1 ) = P -> P = ( ( 2 x. n ) + 1 ) ) | 
						
							| 37 |  | flodddiv4 |  |-  ( ( n e. ZZ /\ P = ( ( 2 x. n ) + 1 ) ) -> ( |_ ` ( P / 4 ) ) = if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) ) | 
						
							| 38 | 34 36 37 | syl2an |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( |_ ` ( P / 4 ) ) = if ( 2 || n , ( n / 2 ) , ( ( n - 1 ) / 2 ) ) ) | 
						
							| 39 |  | oveq1 |  |-  ( P = ( ( 2 x. n ) + 1 ) -> ( P - 1 ) = ( ( ( 2 x. n ) + 1 ) - 1 ) ) | 
						
							| 40 | 39 | eqcoms |  |-  ( ( ( 2 x. n ) + 1 ) = P -> ( P - 1 ) = ( ( ( 2 x. n ) + 1 ) - 1 ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( P - 1 ) = ( ( ( 2 x. n ) + 1 ) - 1 ) ) | 
						
							| 42 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 43 | 42 | a1i |  |-  ( n e. NN0 -> 2 e. NN0 ) | 
						
							| 44 |  | id |  |-  ( n e. NN0 -> n e. NN0 ) | 
						
							| 45 | 43 44 | nn0mulcld |  |-  ( n e. NN0 -> ( 2 x. n ) e. NN0 ) | 
						
							| 46 | 45 | nn0cnd |  |-  ( n e. NN0 -> ( 2 x. n ) e. CC ) | 
						
							| 47 |  | pncan1 |  |-  ( ( 2 x. n ) e. CC -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( n e. NN0 -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) | 
						
							| 49 | 48 | ad2antlr |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) | 
						
							| 50 | 41 49 | eqtrd |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( P - 1 ) = ( 2 x. n ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( ( P - 1 ) / 2 ) = ( ( 2 x. n ) / 2 ) ) | 
						
							| 52 |  | nn0cn |  |-  ( n e. NN0 -> n e. CC ) | 
						
							| 53 |  | 2cnd |  |-  ( n e. NN0 -> 2 e. CC ) | 
						
							| 54 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 55 | 54 | a1i |  |-  ( n e. NN0 -> 2 =/= 0 ) | 
						
							| 56 | 52 53 55 | divcan3d |  |-  ( n e. NN0 -> ( ( 2 x. n ) / 2 ) = n ) | 
						
							| 57 | 56 | ad2antlr |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( ( 2 x. n ) / 2 ) = n ) | 
						
							| 58 | 51 57 | eqtrd |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( ( P - 1 ) / 2 ) = n ) | 
						
							| 59 | 32 38 58 | 3brtr4d |  |-  ( ( ( P e. Prime /\ n e. NN0 ) /\ ( ( 2 x. n ) + 1 ) = P ) -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) | 
						
							| 60 | 59 | rexlimdva2 |  |-  ( P e. Prime -> ( E. n e. NN0 ( ( 2 x. n ) + 1 ) = P -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 61 | 4 60 | sylbid |  |-  ( P e. Prime -> ( -. 2 || P -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 62 | 61 | imp |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) |