| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℕ0 ) | 
						
							| 3 |  | oddnn02np1 | ⊢ ( 𝑃  ∈  ℕ0  →  ( ¬  2  ∥  𝑃  ↔  ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 ) ) | 
						
							| 4 | 1 2 3 | 3syl | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  2  ∥  𝑃  ↔  ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 ) ) | 
						
							| 5 |  | iftrue | ⊢ ( 2  ∥  𝑛  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  =  ( 𝑛  /  2 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 2  ∥  𝑛  ∧  𝑛  ∈  ℕ0 )  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  =  ( 𝑛  /  2 ) ) | 
						
							| 7 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 8 |  | nn0ledivnn | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  2  ∈  ℕ )  →  ( 𝑛  /  2 )  ≤  𝑛 ) | 
						
							| 9 | 7 8 | mpan2 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  /  2 )  ≤  𝑛 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 2  ∥  𝑛  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  /  2 )  ≤  𝑛 ) | 
						
							| 11 | 6 10 | eqbrtrd | ⊢ ( ( 2  ∥  𝑛  ∧  𝑛  ∈  ℕ0 )  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  ≤  𝑛 ) | 
						
							| 12 |  | iffalse | ⊢ ( ¬  2  ∥  𝑛  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  =  ( ( 𝑛  −  1 )  /  2 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ¬  2  ∥  𝑛  ∧  𝑛  ∈  ℕ0 )  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  =  ( ( 𝑛  −  1 )  /  2 ) ) | 
						
							| 14 |  | nn0re | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℝ ) | 
						
							| 15 |  | peano2rem | ⊢ ( 𝑛  ∈  ℝ  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 16 | 15 | rehalfcld | ⊢ ( 𝑛  ∈  ℝ  →  ( ( 𝑛  −  1 )  /  2 )  ∈  ℝ ) | 
						
							| 17 | 14 16 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑛  −  1 )  /  2 )  ∈  ℝ ) | 
						
							| 18 | 14 | rehalfcld | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  /  2 )  ∈  ℝ ) | 
						
							| 19 | 14 | lem1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  −  1 )  ≤  𝑛 ) | 
						
							| 20 | 14 15 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 21 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 22 |  | 2pos | ⊢ 0  <  2 | 
						
							| 23 | 21 22 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 25 |  | lediv1 | ⊢ ( ( ( 𝑛  −  1 )  ∈  ℝ  ∧  𝑛  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑛  −  1 )  ≤  𝑛  ↔  ( ( 𝑛  −  1 )  /  2 )  ≤  ( 𝑛  /  2 ) ) ) | 
						
							| 26 | 20 14 24 25 | syl3anc | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑛  −  1 )  ≤  𝑛  ↔  ( ( 𝑛  −  1 )  /  2 )  ≤  ( 𝑛  /  2 ) ) ) | 
						
							| 27 | 19 26 | mpbid | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑛  −  1 )  /  2 )  ≤  ( 𝑛  /  2 ) ) | 
						
							| 28 | 17 18 14 27 9 | letrd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑛  −  1 )  /  2 )  ≤  𝑛 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ¬  2  ∥  𝑛  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  −  1 )  /  2 )  ≤  𝑛 ) | 
						
							| 30 | 13 29 | eqbrtrd | ⊢ ( ( ¬  2  ∥  𝑛  ∧  𝑛  ∈  ℕ0 )  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  ≤  𝑛 ) | 
						
							| 31 | 11 30 | pm2.61ian | ⊢ ( 𝑛  ∈  ℕ0  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  ≤  𝑛 ) | 
						
							| 32 | 31 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) )  ≤  𝑛 ) | 
						
							| 33 |  | nn0z | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℤ ) | 
						
							| 35 |  | eqcom | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑃  ↔  𝑃  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 36 | 35 | biimpi | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑃  →  𝑃  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 37 |  | flodddiv4 | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑃  =  ( ( 2  ·  𝑛 )  +  1 ) )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  =  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) ) ) | 
						
							| 38 | 34 36 37 | syl2an | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  =  if ( 2  ∥  𝑛 ,  ( 𝑛  /  2 ) ,  ( ( 𝑛  −  1 )  /  2 ) ) ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑃  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( 𝑃  −  1 )  =  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 ) ) | 
						
							| 40 | 39 | eqcoms | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑃  →  ( 𝑃  −  1 )  =  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( 𝑃  −  1 )  =  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 ) ) | 
						
							| 42 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 44 |  | id | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℕ0 ) | 
						
							| 45 | 43 44 | nn0mulcld | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 46 | 45 | nn0cnd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 47 |  | pncan1 | ⊢ ( ( 2  ·  𝑛 )  ∈  ℂ  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 50 | 41 49 | eqtrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( 𝑃  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( ( 𝑃  −  1 )  /  2 )  =  ( ( 2  ·  𝑛 )  /  2 ) ) | 
						
							| 52 |  | nn0cn | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ ) | 
						
							| 53 |  | 2cnd | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 54 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 55 | 54 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  2  ≠  0 ) | 
						
							| 56 | 52 53 55 | divcan3d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 2  ·  𝑛 )  /  2 )  =  𝑛 ) | 
						
							| 57 | 56 | ad2antlr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( ( 2  ·  𝑛 )  /  2 )  =  𝑛 ) | 
						
							| 58 | 51 57 | eqtrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( ( 𝑃  −  1 )  /  2 )  =  𝑛 ) | 
						
							| 59 | 32 38 58 | 3brtr4d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑃 )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 60 | 59 | rexlimdva2 | ⊢ ( 𝑃  ∈  ℙ  →  ( ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑃  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 61 | 4 60 | sylbid | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  2  ∥  𝑃  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 62 | 61 | imp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) |