| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgslem1a |  |-  ( ( P e. Prime /\ -. 2 || P ) -> { x e. ZZ | E. i e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( x = ( i x. 2 ) /\ ( P / 2 ) < ( x mod P ) ) } = { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } ) | 
						
							| 2 | 1 | fveq2d |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( # ` { x e. ZZ | E. i e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( x = ( i x. 2 ) /\ ( P / 2 ) < ( x mod P ) ) } ) = ( # ` { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } ) ) | 
						
							| 3 |  | ovex |  |-  ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) e. _V | 
						
							| 4 | 3 | mptex |  |-  ( y e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) |-> ( y x. 2 ) ) e. _V | 
						
							| 5 |  | f1oeq1 |  |-  ( f = ( y e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) |-> ( y x. 2 ) ) -> ( f : ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } <-> ( y e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) |-> ( y x. 2 ) ) : ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } ) ) | 
						
							| 6 |  | eqid |  |-  ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) = ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) | 
						
							| 7 |  | eqid |  |-  ( y e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) |-> ( y x. 2 ) ) = ( y e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) |-> ( y x. 2 ) ) | 
						
							| 8 | 6 7 | 2lgslem1b |  |-  ( y e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) |-> ( y x. 2 ) ) : ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } | 
						
							| 9 | 4 5 8 | ceqsexv2d |  |-  E. f f : ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } | 
						
							| 10 | 9 | a1i |  |-  ( ( P e. Prime /\ -. 2 || P ) -> E. f f : ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } ) | 
						
							| 11 |  | hasheqf1oi |  |-  ( ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) e. _V -> ( E. f f : ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } -> ( # ` ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) ) = ( # ` { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } ) ) ) | 
						
							| 12 | 3 10 11 | mpsyl |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( # ` ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) ) = ( # ` { x e. ZZ | E. i e. ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) x = ( i x. 2 ) } ) ) | 
						
							| 13 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 14 | 13 | zred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 15 |  | 4re |  |-  4 e. RR | 
						
							| 16 | 15 | a1i |  |-  ( P e. Prime -> 4 e. RR ) | 
						
							| 17 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 18 | 17 | a1i |  |-  ( P e. Prime -> 4 =/= 0 ) | 
						
							| 19 | 14 16 18 | redivcld |  |-  ( P e. Prime -> ( P / 4 ) e. RR ) | 
						
							| 20 | 19 | flcld |  |-  ( P e. Prime -> ( |_ ` ( P / 4 ) ) e. ZZ ) | 
						
							| 21 | 20 | adantr |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( |_ ` ( P / 4 ) ) e. ZZ ) | 
						
							| 22 |  | oddm1d2 |  |-  ( P e. ZZ -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 23 | 13 22 | syl |  |-  ( P e. Prime -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( ( P - 1 ) / 2 ) e. ZZ ) | 
						
							| 25 |  | 2lgslem1c |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) | 
						
							| 26 |  | eluz2 |  |-  ( ( ( P - 1 ) / 2 ) e. ( ZZ>= ` ( |_ ` ( P / 4 ) ) ) <-> ( ( |_ ` ( P / 4 ) ) e. ZZ /\ ( ( P - 1 ) / 2 ) e. ZZ /\ ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 27 | 21 24 25 26 | syl3anbrc |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( ( P - 1 ) / 2 ) e. ( ZZ>= ` ( |_ ` ( P / 4 ) ) ) ) | 
						
							| 28 |  | hashfzp1 |  |-  ( ( ( P - 1 ) / 2 ) e. ( ZZ>= ` ( |_ ` ( P / 4 ) ) ) -> ( # ` ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) ) = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( # ` ( ( ( |_ ` ( P / 4 ) ) + 1 ) ... ( ( P - 1 ) / 2 ) ) ) = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) ) | 
						
							| 30 | 2 12 29 | 3eqtr2d |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( # ` { x e. ZZ | E. i e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( x = ( i x. 2 ) /\ ( P / 2 ) < ( x mod P ) ) } ) = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) ) |