| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgslem1b.i |  |-  I = ( A ... B ) | 
						
							| 2 |  | 2lgslem1b.f |  |-  F = ( j e. I |-> ( j x. 2 ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( x = ( j x. 2 ) -> ( x = ( i x. 2 ) <-> ( j x. 2 ) = ( i x. 2 ) ) ) | 
						
							| 4 | 3 | rexbidv |  |-  ( x = ( j x. 2 ) -> ( E. i e. I x = ( i x. 2 ) <-> E. i e. I ( j x. 2 ) = ( i x. 2 ) ) ) | 
						
							| 5 |  | elfzelz |  |-  ( j e. ( A ... B ) -> j e. ZZ ) | 
						
							| 6 | 5 1 | eleq2s |  |-  ( j e. I -> j e. ZZ ) | 
						
							| 7 |  | 2z |  |-  2 e. ZZ | 
						
							| 8 | 7 | a1i |  |-  ( j e. I -> 2 e. ZZ ) | 
						
							| 9 | 6 8 | zmulcld |  |-  ( j e. I -> ( j x. 2 ) e. ZZ ) | 
						
							| 10 |  | id |  |-  ( j e. I -> j e. I ) | 
						
							| 11 |  | oveq1 |  |-  ( i = j -> ( i x. 2 ) = ( j x. 2 ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( i = j -> ( ( j x. 2 ) = ( i x. 2 ) <-> ( j x. 2 ) = ( j x. 2 ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( j e. I /\ i = j ) -> ( ( j x. 2 ) = ( i x. 2 ) <-> ( j x. 2 ) = ( j x. 2 ) ) ) | 
						
							| 14 |  | eqidd |  |-  ( j e. I -> ( j x. 2 ) = ( j x. 2 ) ) | 
						
							| 15 | 10 13 14 | rspcedvd |  |-  ( j e. I -> E. i e. I ( j x. 2 ) = ( i x. 2 ) ) | 
						
							| 16 | 4 9 15 | elrabd |  |-  ( j e. I -> ( j x. 2 ) e. { x e. ZZ | E. i e. I x = ( i x. 2 ) } ) | 
						
							| 17 | 2 16 | fmpti |  |-  F : I --> { x e. ZZ | E. i e. I x = ( i x. 2 ) } | 
						
							| 18 |  | oveq1 |  |-  ( j = y -> ( j x. 2 ) = ( y x. 2 ) ) | 
						
							| 19 |  | simpl |  |-  ( ( y e. I /\ z e. I ) -> y e. I ) | 
						
							| 20 |  | ovexd |  |-  ( ( y e. I /\ z e. I ) -> ( y x. 2 ) e. _V ) | 
						
							| 21 | 2 18 19 20 | fvmptd3 |  |-  ( ( y e. I /\ z e. I ) -> ( F ` y ) = ( y x. 2 ) ) | 
						
							| 22 |  | oveq1 |  |-  ( j = z -> ( j x. 2 ) = ( z x. 2 ) ) | 
						
							| 23 |  | simpr |  |-  ( ( y e. I /\ z e. I ) -> z e. I ) | 
						
							| 24 |  | ovexd |  |-  ( ( y e. I /\ z e. I ) -> ( z x. 2 ) e. _V ) | 
						
							| 25 | 2 22 23 24 | fvmptd3 |  |-  ( ( y e. I /\ z e. I ) -> ( F ` z ) = ( z x. 2 ) ) | 
						
							| 26 | 21 25 | eqeq12d |  |-  ( ( y e. I /\ z e. I ) -> ( ( F ` y ) = ( F ` z ) <-> ( y x. 2 ) = ( z x. 2 ) ) ) | 
						
							| 27 |  | elfzelz |  |-  ( y e. ( A ... B ) -> y e. ZZ ) | 
						
							| 28 | 27 1 | eleq2s |  |-  ( y e. I -> y e. ZZ ) | 
						
							| 29 | 28 | zcnd |  |-  ( y e. I -> y e. CC ) | 
						
							| 30 | 29 | adantr |  |-  ( ( y e. I /\ z e. I ) -> y e. CC ) | 
						
							| 31 |  | elfzelz |  |-  ( z e. ( A ... B ) -> z e. ZZ ) | 
						
							| 32 | 31 1 | eleq2s |  |-  ( z e. I -> z e. ZZ ) | 
						
							| 33 | 32 | zcnd |  |-  ( z e. I -> z e. CC ) | 
						
							| 34 | 33 | adantl |  |-  ( ( y e. I /\ z e. I ) -> z e. CC ) | 
						
							| 35 |  | 2cnd |  |-  ( ( y e. I /\ z e. I ) -> 2 e. CC ) | 
						
							| 36 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 37 | 36 | a1i |  |-  ( ( y e. I /\ z e. I ) -> 2 =/= 0 ) | 
						
							| 38 | 30 34 35 37 | mulcan2d |  |-  ( ( y e. I /\ z e. I ) -> ( ( y x. 2 ) = ( z x. 2 ) <-> y = z ) ) | 
						
							| 39 | 38 | biimpd |  |-  ( ( y e. I /\ z e. I ) -> ( ( y x. 2 ) = ( z x. 2 ) -> y = z ) ) | 
						
							| 40 | 26 39 | sylbid |  |-  ( ( y e. I /\ z e. I ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) | 
						
							| 41 | 40 | rgen2 |  |-  A. y e. I A. z e. I ( ( F ` y ) = ( F ` z ) -> y = z ) | 
						
							| 42 |  | dff13 |  |-  ( F : I -1-1-> { x e. ZZ | E. i e. I x = ( i x. 2 ) } <-> ( F : I --> { x e. ZZ | E. i e. I x = ( i x. 2 ) } /\ A. y e. I A. z e. I ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) | 
						
							| 43 | 17 41 42 | mpbir2an |  |-  F : I -1-1-> { x e. ZZ | E. i e. I x = ( i x. 2 ) } | 
						
							| 44 |  | oveq1 |  |-  ( j = i -> ( j x. 2 ) = ( i x. 2 ) ) | 
						
							| 45 | 44 | eqeq2d |  |-  ( j = i -> ( x = ( j x. 2 ) <-> x = ( i x. 2 ) ) ) | 
						
							| 46 | 45 | cbvrexvw |  |-  ( E. j e. I x = ( j x. 2 ) <-> E. i e. I x = ( i x. 2 ) ) | 
						
							| 47 |  | elfzelz |  |-  ( i e. ( A ... B ) -> i e. ZZ ) | 
						
							| 48 | 7 | a1i |  |-  ( i e. ( A ... B ) -> 2 e. ZZ ) | 
						
							| 49 | 47 48 | zmulcld |  |-  ( i e. ( A ... B ) -> ( i x. 2 ) e. ZZ ) | 
						
							| 50 | 49 1 | eleq2s |  |-  ( i e. I -> ( i x. 2 ) e. ZZ ) | 
						
							| 51 |  | eleq1 |  |-  ( x = ( i x. 2 ) -> ( x e. ZZ <-> ( i x. 2 ) e. ZZ ) ) | 
						
							| 52 | 50 51 | syl5ibrcom |  |-  ( i e. I -> ( x = ( i x. 2 ) -> x e. ZZ ) ) | 
						
							| 53 | 52 | rexlimiv |  |-  ( E. i e. I x = ( i x. 2 ) -> x e. ZZ ) | 
						
							| 54 | 53 | pm4.71ri |  |-  ( E. i e. I x = ( i x. 2 ) <-> ( x e. ZZ /\ E. i e. I x = ( i x. 2 ) ) ) | 
						
							| 55 | 46 54 | bitri |  |-  ( E. j e. I x = ( j x. 2 ) <-> ( x e. ZZ /\ E. i e. I x = ( i x. 2 ) ) ) | 
						
							| 56 | 55 | abbii |  |-  { x | E. j e. I x = ( j x. 2 ) } = { x | ( x e. ZZ /\ E. i e. I x = ( i x. 2 ) ) } | 
						
							| 57 | 2 | rnmpt |  |-  ran F = { x | E. j e. I x = ( j x. 2 ) } | 
						
							| 58 |  | df-rab |  |-  { x e. ZZ | E. i e. I x = ( i x. 2 ) } = { x | ( x e. ZZ /\ E. i e. I x = ( i x. 2 ) ) } | 
						
							| 59 | 56 57 58 | 3eqtr4i |  |-  ran F = { x e. ZZ | E. i e. I x = ( i x. 2 ) } | 
						
							| 60 |  | dff1o5 |  |-  ( F : I -1-1-onto-> { x e. ZZ | E. i e. I x = ( i x. 2 ) } <-> ( F : I -1-1-> { x e. ZZ | E. i e. I x = ( i x. 2 ) } /\ ran F = { x e. ZZ | E. i e. I x = ( i x. 2 ) } ) ) | 
						
							| 61 | 43 59 60 | mpbir2an |  |-  F : I -1-1-onto-> { x e. ZZ | E. i e. I x = ( i x. 2 ) } |