| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgslem1b.i | ⊢ 𝐼  =  ( 𝐴 ... 𝐵 ) | 
						
							| 2 |  | 2lgslem1b.f | ⊢ 𝐹  =  ( 𝑗  ∈  𝐼  ↦  ( 𝑗  ·  2 ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝑗  ·  2 )  →  ( 𝑥  =  ( 𝑖  ·  2 )  ↔  ( 𝑗  ·  2 )  =  ( 𝑖  ·  2 ) ) ) | 
						
							| 4 | 3 | rexbidv | ⊢ ( 𝑥  =  ( 𝑗  ·  2 )  →  ( ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 )  ↔  ∃ 𝑖  ∈  𝐼 ( 𝑗  ·  2 )  =  ( 𝑖  ·  2 ) ) ) | 
						
							| 5 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 𝐴 ... 𝐵 )  →  𝑗  ∈  ℤ ) | 
						
							| 6 | 5 1 | eleq2s | ⊢ ( 𝑗  ∈  𝐼  →  𝑗  ∈  ℤ ) | 
						
							| 7 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑗  ∈  𝐼  →  2  ∈  ℤ ) | 
						
							| 9 | 6 8 | zmulcld | ⊢ ( 𝑗  ∈  𝐼  →  ( 𝑗  ·  2 )  ∈  ℤ ) | 
						
							| 10 |  | id | ⊢ ( 𝑗  ∈  𝐼  →  𝑗  ∈  𝐼 ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ·  2 )  =  ( 𝑗  ·  2 ) ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑗  ·  2 )  =  ( 𝑖  ·  2 )  ↔  ( 𝑗  ·  2 )  =  ( 𝑗  ·  2 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑗  ∈  𝐼  ∧  𝑖  =  𝑗 )  →  ( ( 𝑗  ·  2 )  =  ( 𝑖  ·  2 )  ↔  ( 𝑗  ·  2 )  =  ( 𝑗  ·  2 ) ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝑗  ∈  𝐼  →  ( 𝑗  ·  2 )  =  ( 𝑗  ·  2 ) ) | 
						
							| 15 | 10 13 14 | rspcedvd | ⊢ ( 𝑗  ∈  𝐼  →  ∃ 𝑖  ∈  𝐼 ( 𝑗  ·  2 )  =  ( 𝑖  ·  2 ) ) | 
						
							| 16 | 4 9 15 | elrabd | ⊢ ( 𝑗  ∈  𝐼  →  ( 𝑗  ·  2 )  ∈  { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) } ) | 
						
							| 17 | 2 16 | fmpti | ⊢ 𝐹 : 𝐼 ⟶ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) } | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑗  =  𝑦  →  ( 𝑗  ·  2 )  =  ( 𝑦  ·  2 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 20 |  | ovexd | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( 𝑦  ·  2 )  ∈  V ) | 
						
							| 21 | 2 18 19 20 | fvmptd3 | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ·  2 ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑗  =  𝑧  →  ( 𝑗  ·  2 )  =  ( 𝑧  ·  2 ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  𝑧  ∈  𝐼 ) | 
						
							| 24 |  | ovexd | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( 𝑧  ·  2 )  ∈  V ) | 
						
							| 25 | 2 22 23 24 | fvmptd3 | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧  ·  2 ) ) | 
						
							| 26 | 21 25 | eqeq12d | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ( 𝑦  ·  2 )  =  ( 𝑧  ·  2 ) ) ) | 
						
							| 27 |  | elfzelz | ⊢ ( 𝑦  ∈  ( 𝐴 ... 𝐵 )  →  𝑦  ∈  ℤ ) | 
						
							| 28 | 27 1 | eleq2s | ⊢ ( 𝑦  ∈  𝐼  →  𝑦  ∈  ℤ ) | 
						
							| 29 | 28 | zcnd | ⊢ ( 𝑦  ∈  𝐼  →  𝑦  ∈  ℂ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  𝑦  ∈  ℂ ) | 
						
							| 31 |  | elfzelz | ⊢ ( 𝑧  ∈  ( 𝐴 ... 𝐵 )  →  𝑧  ∈  ℤ ) | 
						
							| 32 | 31 1 | eleq2s | ⊢ ( 𝑧  ∈  𝐼  →  𝑧  ∈  ℤ ) | 
						
							| 33 | 32 | zcnd | ⊢ ( 𝑧  ∈  𝐼  →  𝑧  ∈  ℂ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  𝑧  ∈  ℂ ) | 
						
							| 35 |  | 2cnd | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  2  ∈  ℂ ) | 
						
							| 36 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  2  ≠  0 ) | 
						
							| 38 | 30 34 35 37 | mulcan2d | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑦  ·  2 )  =  ( 𝑧  ·  2 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 39 | 38 | biimpd | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑦  ·  2 )  =  ( 𝑧  ·  2 )  →  𝑦  =  𝑧 ) ) | 
						
							| 40 | 26 39 | sylbid | ⊢ ( ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 41 | 40 | rgen2 | ⊢ ∀ 𝑦  ∈  𝐼 ∀ 𝑧  ∈  𝐼 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 42 |  | dff13 | ⊢ ( 𝐹 : 𝐼 –1-1→ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) }  ↔  ( 𝐹 : 𝐼 ⟶ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) }  ∧  ∀ 𝑦  ∈  𝐼 ∀ 𝑧  ∈  𝐼 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 43 | 17 41 42 | mpbir2an | ⊢ 𝐹 : 𝐼 –1-1→ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) } | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  ·  2 )  =  ( 𝑖  ·  2 ) ) | 
						
							| 45 | 44 | eqeq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑥  =  ( 𝑗  ·  2 )  ↔  𝑥  =  ( 𝑖  ·  2 ) ) ) | 
						
							| 46 | 45 | cbvrexvw | ⊢ ( ∃ 𝑗  ∈  𝐼 𝑥  =  ( 𝑗  ·  2 )  ↔  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) ) | 
						
							| 47 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 𝐴 ... 𝐵 )  →  𝑖  ∈  ℤ ) | 
						
							| 48 | 7 | a1i | ⊢ ( 𝑖  ∈  ( 𝐴 ... 𝐵 )  →  2  ∈  ℤ ) | 
						
							| 49 | 47 48 | zmulcld | ⊢ ( 𝑖  ∈  ( 𝐴 ... 𝐵 )  →  ( 𝑖  ·  2 )  ∈  ℤ ) | 
						
							| 50 | 49 1 | eleq2s | ⊢ ( 𝑖  ∈  𝐼  →  ( 𝑖  ·  2 )  ∈  ℤ ) | 
						
							| 51 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑖  ·  2 )  →  ( 𝑥  ∈  ℤ  ↔  ( 𝑖  ·  2 )  ∈  ℤ ) ) | 
						
							| 52 | 50 51 | syl5ibrcom | ⊢ ( 𝑖  ∈  𝐼  →  ( 𝑥  =  ( 𝑖  ·  2 )  →  𝑥  ∈  ℤ ) ) | 
						
							| 53 | 52 | rexlimiv | ⊢ ( ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 )  →  𝑥  ∈  ℤ ) | 
						
							| 54 | 53 | pm4.71ri | ⊢ ( ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 )  ↔  ( 𝑥  ∈  ℤ  ∧  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) ) ) | 
						
							| 55 | 46 54 | bitri | ⊢ ( ∃ 𝑗  ∈  𝐼 𝑥  =  ( 𝑗  ·  2 )  ↔  ( 𝑥  ∈  ℤ  ∧  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) ) ) | 
						
							| 56 | 55 | abbii | ⊢ { 𝑥  ∣  ∃ 𝑗  ∈  𝐼 𝑥  =  ( 𝑗  ·  2 ) }  =  { 𝑥  ∣  ( 𝑥  ∈  ℤ  ∧  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) ) } | 
						
							| 57 | 2 | rnmpt | ⊢ ran  𝐹  =  { 𝑥  ∣  ∃ 𝑗  ∈  𝐼 𝑥  =  ( 𝑗  ·  2 ) } | 
						
							| 58 |  | df-rab | ⊢ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) }  =  { 𝑥  ∣  ( 𝑥  ∈  ℤ  ∧  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) ) } | 
						
							| 59 | 56 57 58 | 3eqtr4i | ⊢ ran  𝐹  =  { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) } | 
						
							| 60 |  | dff1o5 | ⊢ ( 𝐹 : 𝐼 –1-1-onto→ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) }  ↔  ( 𝐹 : 𝐼 –1-1→ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) }  ∧  ran  𝐹  =  { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) } ) ) | 
						
							| 61 | 43 59 60 | mpbir2an | ⊢ 𝐹 : 𝐼 –1-1-onto→ { 𝑥  ∈  ℤ  ∣  ∃ 𝑖  ∈  𝐼 𝑥  =  ( 𝑖  ·  2 ) } |