Description: Lemma 1 for 2lgslem1 . (Contributed by AV, 18-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgslem1a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn | |
|
2 | 1 | nnnn0d | |
3 | 2 | ad2antrr | |
4 | 4nn | |
|
5 | 3 4 | jctir | |
6 | fldivnn0 | |
|
7 | nn0p1nn | |
|
8 | 5 6 7 | 3syl | |
9 | elnnuz | |
|
10 | 8 9 | sylib | |
11 | fzss1 | |
|
12 | rexss | |
|
13 | 10 11 12 | 3syl | |
14 | ancom | |
|
15 | 2 4 | jctir | |
16 | 15 6 | syl | |
17 | 16 | nn0zd | |
18 | 17 | ad2antrr | |
19 | elfzelz | |
|
20 | zltp1le | |
|
21 | 18 19 20 | syl2an | |
22 | 21 | bicomd | |
23 | 22 | anbi1d | |
24 | 19 | adantl | |
25 | 17 | peano2zd | |
26 | 25 | adantr | |
27 | 26 | ad2antrr | |
28 | prmz | |
|
29 | oddm1d2 | |
|
30 | 28 29 | syl | |
31 | 30 | biimpa | |
32 | 31 | ad2antrr | |
33 | elfz | |
|
34 | 24 27 32 33 | syl3anc | |
35 | elfzle2 | |
|
36 | 35 | adantl | |
37 | 36 | biantrud | |
38 | 23 34 37 | 3bitr4d | |
39 | 28 | ad2antrr | |
40 | 2lgslem1a2 | |
|
41 | 39 19 40 | syl2an | |
42 | 38 41 | bitrd | |
43 | 2lgslem1a1 | |
|
44 | 1 43 | sylan | |
45 | 44 | adantr | |
46 | oveq1 | |
|
47 | 46 | oveq1d | |
48 | 46 47 | eqeq12d | |
49 | 48 | rspccva | |
50 | 45 49 | sylan | |
51 | 50 | breq2d | |
52 | 42 51 | bitrd | |
53 | oveq1 | |
|
54 | 53 | eqcomd | |
55 | 54 | breq2d | |
56 | 52 55 | sylan9bb | |
57 | 56 | pm5.32da | |
58 | 14 57 | bitrid | |
59 | 58 | rexbidva | |
60 | 13 59 | bitrd | |
61 | 60 | bicomd | |
62 | 61 | rabbidva | |