| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
|
| 2 |
1
|
nnnn0d |
|
| 3 |
2
|
ad2antrr |
|
| 4 |
|
4nn |
|
| 5 |
3 4
|
jctir |
|
| 6 |
|
fldivnn0 |
|
| 7 |
|
nn0p1nn |
|
| 8 |
5 6 7
|
3syl |
|
| 9 |
|
elnnuz |
|
| 10 |
8 9
|
sylib |
|
| 11 |
|
fzss1 |
|
| 12 |
|
rexss |
|
| 13 |
10 11 12
|
3syl |
|
| 14 |
|
ancom |
|
| 15 |
2 4
|
jctir |
|
| 16 |
15 6
|
syl |
|
| 17 |
16
|
nn0zd |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
elfzelz |
|
| 20 |
|
zltp1le |
|
| 21 |
18 19 20
|
syl2an |
|
| 22 |
21
|
bicomd |
|
| 23 |
22
|
anbi1d |
|
| 24 |
19
|
adantl |
|
| 25 |
17
|
peano2zd |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
|
prmz |
|
| 29 |
|
oddm1d2 |
|
| 30 |
28 29
|
syl |
|
| 31 |
30
|
biimpa |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
|
elfz |
|
| 34 |
24 27 32 33
|
syl3anc |
|
| 35 |
|
elfzle2 |
|
| 36 |
35
|
adantl |
|
| 37 |
36
|
biantrud |
|
| 38 |
23 34 37
|
3bitr4d |
|
| 39 |
28
|
ad2antrr |
|
| 40 |
|
2lgslem1a2 |
|
| 41 |
39 19 40
|
syl2an |
|
| 42 |
38 41
|
bitrd |
|
| 43 |
|
2lgslem1a1 |
|
| 44 |
1 43
|
sylan |
|
| 45 |
44
|
adantr |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
oveq1d |
|
| 48 |
46 47
|
eqeq12d |
|
| 49 |
48
|
rspccva |
|
| 50 |
45 49
|
sylan |
|
| 51 |
50
|
breq2d |
|
| 52 |
42 51
|
bitrd |
|
| 53 |
|
oveq1 |
|
| 54 |
53
|
eqcomd |
|
| 55 |
54
|
breq2d |
|
| 56 |
52 55
|
sylan9bb |
|
| 57 |
56
|
pm5.32da |
|
| 58 |
14 57
|
bitrid |
|
| 59 |
58
|
rexbidva |
|
| 60 |
13 59
|
bitrd |
|
| 61 |
60
|
bicomd |
|
| 62 |
61
|
rabbidva |
|