Metamath Proof Explorer


Theorem 2lgslem1a

Description: Lemma 1 for 2lgslem1 . (Contributed by AV, 18-Jun-2021)

Ref Expression
Assertion 2lgslem1a P¬2Px|i1P12x=i2P2<xmodP=x|iP4+1P12x=i2

Proof

Step Hyp Ref Expression
1 prmnn PP
2 1 nnnn0d PP0
3 2 ad2antrr P¬2PxP0
4 4nn 4
5 3 4 jctir P¬2PxP04
6 fldivnn0 P04P40
7 nn0p1nn P40P4+1
8 5 6 7 3syl P¬2PxP4+1
9 elnnuz P4+1P4+11
10 8 9 sylib P¬2PxP4+11
11 fzss1 P4+11P4+1P121P12
12 rexss P4+1P121P12iP4+1P12x=i2i1P12iP4+1P12x=i2
13 10 11 12 3syl P¬2PxiP4+1P12x=i2i1P12iP4+1P12x=i2
14 ancom iP4+1P12x=i2x=i2iP4+1P12
15 2 4 jctir PP04
16 15 6 syl PP40
17 16 nn0zd PP4
18 17 ad2antrr P¬2PxP4
19 elfzelz i1P12i
20 zltp1le P4iP4<iP4+1i
21 18 19 20 syl2an P¬2Pxi1P12P4<iP4+1i
22 21 bicomd P¬2Pxi1P12P4+1iP4<i
23 22 anbi1d P¬2Pxi1P12P4+1iiP12P4<iiP12
24 19 adantl P¬2Pxi1P12i
25 17 peano2zd PP4+1
26 25 adantr P¬2PP4+1
27 26 ad2antrr P¬2Pxi1P12P4+1
28 prmz PP
29 oddm1d2 P¬2PP12
30 28 29 syl P¬2PP12
31 30 biimpa P¬2PP12
32 31 ad2antrr P¬2Pxi1P12P12
33 elfz iP4+1P12iP4+1P12P4+1iiP12
34 24 27 32 33 syl3anc P¬2Pxi1P12iP4+1P12P4+1iiP12
35 elfzle2 i1P12iP12
36 35 adantl P¬2Pxi1P12iP12
37 36 biantrud P¬2Pxi1P12P4<iP4<iiP12
38 23 34 37 3bitr4d P¬2Pxi1P12iP4+1P12P4<i
39 28 ad2antrr P¬2PxP
40 2lgslem1a2 PiP4<iP2<i2
41 39 19 40 syl2an P¬2Pxi1P12P4<iP2<i2
42 38 41 bitrd P¬2Pxi1P12iP4+1P12P2<i2
43 2lgslem1a1 P¬2Pk1P12k2=k2modP
44 1 43 sylan P¬2Pk1P12k2=k2modP
45 44 adantr P¬2Pxk1P12k2=k2modP
46 oveq1 k=ik2=i2
47 46 oveq1d k=ik2modP=i2modP
48 46 47 eqeq12d k=ik2=k2modPi2=i2modP
49 48 rspccva k1P12k2=k2modPi1P12i2=i2modP
50 45 49 sylan P¬2Pxi1P12i2=i2modP
51 50 breq2d P¬2Pxi1P12P2<i2P2<i2modP
52 42 51 bitrd P¬2Pxi1P12iP4+1P12P2<i2modP
53 oveq1 x=i2xmodP=i2modP
54 53 eqcomd x=i2i2modP=xmodP
55 54 breq2d x=i2P2<i2modPP2<xmodP
56 52 55 sylan9bb P¬2Pxi1P12x=i2iP4+1P12P2<xmodP
57 56 pm5.32da P¬2Pxi1P12x=i2iP4+1P12x=i2P2<xmodP
58 14 57 bitrid P¬2Pxi1P12iP4+1P12x=i2x=i2P2<xmodP
59 58 rexbidva P¬2Pxi1P12iP4+1P12x=i2i1P12x=i2P2<xmodP
60 13 59 bitrd P¬2PxiP4+1P12x=i2i1P12x=i2P2<xmodP
61 60 bicomd P¬2Pxi1P12x=i2P2<xmodPiP4+1P12x=i2
62 61 rabbidva P¬2Px|i1P12x=i2P2<xmodP=x|iP4+1P12x=i2