Metamath Proof Explorer


Theorem 2lplnmN

Description: If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2lplnm.j ˙=joinK
2lplnm.m ˙=meetK
2lplnm.c C=K
2lplnm.n N=LLinesK
2lplnm.p P=LPlanesK
Assertion 2lplnmN KHLXPYPXCX˙YX˙YN

Proof

Step Hyp Ref Expression
1 2lplnm.j ˙=joinK
2 2lplnm.m ˙=meetK
3 2lplnm.c C=K
4 2lplnm.n N=LLinesK
5 2lplnm.p P=LPlanesK
6 simpl3 KHLXPYPXCX˙YYP
7 simpl1 KHLXPYPXCX˙YKHL
8 hllat KHLKLat
9 eqid BaseK=BaseK
10 9 5 lplnbase XPXBaseK
11 9 5 lplnbase YPYBaseK
12 9 2 latmcl KLatXBaseKYBaseKX˙YBaseK
13 8 10 11 12 syl3an KHLXPYPX˙YBaseK
14 13 adantr KHLXPYPXCX˙YX˙YBaseK
15 11 3ad2ant3 KHLXPYPYBaseK
16 15 adantr KHLXPYPXCX˙YYBaseK
17 simp1 KHLXPYPKHL
18 10 3ad2ant2 KHLXPYPXBaseK
19 9 1 2 3 cvrexch KHLXBaseKYBaseKX˙YCYXCX˙Y
20 17 18 15 19 syl3anc KHLXPYPX˙YCYXCX˙Y
21 20 biimpar KHLXPYPXCX˙YX˙YCY
22 9 3 4 5 llncvrlpln KHLX˙YBaseKYBaseKX˙YCYX˙YNYP
23 7 14 16 21 22 syl31anc KHLXPYPXCX˙YX˙YNYP
24 6 23 mpbird KHLXPYPXCX˙YX˙YN