Metamath Proof Explorer


Theorem 2ndcredom

Description: A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion 2ndcredom J2nd𝜔J

Proof

Step Hyp Ref Expression
1 is2ndc J2nd𝜔xTopBasesxωtopGenx=J
2 tgdom xTopBasestopGenx𝒫x
3 simpr xTopBasesxωxω
4 nnenom ω
5 4 ensymi ω
6 domentr xωωx
7 3 5 6 sylancl xTopBasesxωx
8 pwdom x𝒫x𝒫
9 7 8 syl xTopBasesxω𝒫x𝒫
10 rpnnen 𝒫
11 10 ensymi 𝒫
12 domentr 𝒫x𝒫𝒫𝒫x
13 9 11 12 sylancl xTopBasesxω𝒫x
14 domtr topGenx𝒫x𝒫xtopGenx
15 2 13 14 syl2an2r xTopBasesxωtopGenx
16 breq1 topGenx=JtopGenxJ
17 15 16 syl5ibcom xTopBasesxωtopGenx=JJ
18 17 expimpd xTopBasesxωtopGenx=JJ
19 18 rexlimiv xTopBasesxωtopGenx=JJ
20 1 19 sylbi J2nd𝜔J