Metamath Proof Explorer


Theorem 2reuimp

Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification if the class of the quantified elements is not empty. (Contributed by AV, 13-Mar-2023)

Ref Expression
Hypotheses 2reuimp.c b=cφθ
2reuimp.d a=dφχ
2reuimp.a a=dθτ
2reuimp.e b=eφη
2reuimp.f c=fθψ
Assertion 2reuimp V∃!aV∃!bVφaVdVbVeVfVcVχτb=cψηa=de=f

Proof

Step Hyp Ref Expression
1 2reuimp.c b=cφθ
2 2reuimp.d a=dφχ
3 2reuimp.a a=dθτ
4 2reuimp.e b=eφη
5 2reuimp.f c=fθψ
6 r19.28zv VcVχτb=cχcVτb=c
7 6 bicomd VχcVτb=ccVχτb=c
8 7 imbi1d VχcVτb=ca=dcVχτb=ca=d
9 r19.36zv VcVχτb=ca=dcVχτb=ca=d
10 r19.42v cVηψe=fχτb=ca=dηψe=fcVχτb=ca=d
11 pm5.31r ηψe=fψηe=f
12 pm5.31r ψηe=fχτb=ca=dχτb=cψηe=fa=d
13 pm5.31r a=dψηe=fψa=dηe=f
14 an12 a=dηe=fηa=de=f
15 13 14 imbitrdi a=dψηe=fψηa=de=f
16 15 ancoms ψηe=fa=dψηa=de=f
17 12 16 syl6 ψηe=fχτb=ca=dχτb=cψηa=de=f
18 11 17 sylan ηψe=fχτb=ca=dχτb=cψηa=de=f
19 18 reximi cVηψe=fχτb=ca=dcVχτb=cψηa=de=f
20 10 19 sylbir ηψe=fcVχτb=ca=dcVχτb=cψηa=de=f
21 20 expcom cVχτb=ca=dηψe=fcVχτb=cψηa=de=f
22 21 expd cVχτb=ca=dηψe=fcVχτb=cψηa=de=f
23 9 22 syl6bir VcVχτb=ca=dηψe=fcVχτb=cψηa=de=f
24 8 23 sylbid VχcVτb=ca=dηψe=fcVχτb=cψηa=de=f
25 24 com23 VηχcVτb=ca=dψe=fcVχτb=cψηa=de=f
26 25 imp4c VηχcVτb=ca=dψe=fcVχτb=cψηa=de=f
27 26 ralimdv VfVηχcVτb=ca=dψe=ffVcVχτb=cψηa=de=f
28 27 reximdv VeVfVηχcVτb=ca=dψe=feVfVcVχτb=cψηa=de=f
29 28 ralimdv VbVeVfVηχcVτb=ca=dψe=fbVeVfVcVχτb=cψηa=de=f
30 29 ralimdv VdVbVeVfVηχcVτb=ca=dψe=fdVbVeVfVcVχτb=cψηa=de=f
31 30 reximdv VaVdVbVeVfVηχcVτb=ca=dψe=faVdVbVeVfVcVχτb=cψηa=de=f
32 1 2 3 4 5 2reuimp0 ∃!aV∃!bVφaVdVbVeVfVηχcVτb=ca=dψe=f
33 31 32 impel V∃!aV∃!bVφaVdVbVeVfVcVχτb=cψηa=de=f