Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification if the class of the quantified elements is not empty. (Contributed by AV, 13-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2reuimp.c | |
|
2reuimp.d | |
||
2reuimp.a | |
||
2reuimp.e | |
||
2reuimp.f | |
||
Assertion | 2reuimp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2reuimp.c | |
|
2 | 2reuimp.d | |
|
3 | 2reuimp.a | |
|
4 | 2reuimp.e | |
|
5 | 2reuimp.f | |
|
6 | r19.28zv | |
|
7 | 6 | bicomd | |
8 | 7 | imbi1d | |
9 | r19.36zv | |
|
10 | r19.42v | |
|
11 | pm5.31r | |
|
12 | pm5.31r | |
|
13 | pm5.31r | |
|
14 | an12 | |
|
15 | 13 14 | imbitrdi | |
16 | 15 | ancoms | |
17 | 12 16 | syl6 | |
18 | 11 17 | sylan | |
19 | 18 | reximi | |
20 | 10 19 | sylbir | |
21 | 20 | expcom | |
22 | 21 | expd | |
23 | 9 22 | syl6bir | |
24 | 8 23 | sylbid | |
25 | 24 | com23 | |
26 | 25 | imp4c | |
27 | 26 | ralimdv | |
28 | 27 | reximdv | |
29 | 28 | ralimdv | |
30 | 29 | ralimdv | |
31 | 30 | reximdv | |
32 | 1 2 3 4 5 | 2reuimp0 | |
33 | 31 32 | impel | |