Metamath Proof Explorer


Theorem 2wlkdlem9

Description: Lemma 9 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
Assertion 2wlkdlem9 φABIF0BCIF1

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 1 2 3 4 5 2wlkdlem8 φF0=JF1=K
7 fveq2 F0=JIF0=IJ
8 7 adantr F0=JF1=KIF0=IJ
9 8 sseq2d F0=JF1=KABIF0ABIJ
10 fveq2 F1=KIF1=IK
11 10 adantl F0=JF1=KIF1=IK
12 11 sseq2d F0=JF1=KBCIF1BCIK
13 9 12 anbi12d F0=JF1=KABIF0BCIF1ABIJBCIK
14 6 13 syl φABIF0BCIF1ABIJBCIK
15 5 14 mpbird φABIF0BCIF1