Metamath Proof Explorer


Theorem 3at

Description: Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 for lines and 4at for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses 3at.l ˙=K
3at.j ˙=joinK
3at.a A=AtomsK
Assertion 3at KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U

Proof

Step Hyp Ref Expression
1 3at.l ˙=K
2 3at.j ˙=joinK
3 3at.a A=AtomsK
4 1 2 3 3atlem7 KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U
5 4 3expia KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U
6 hllat KHLKLat
7 simpl KLatPAQARAKLat
8 simpr1 KLatPAQARAPA
9 eqid BaseK=BaseK
10 9 3 atbase PAPBaseK
11 8 10 syl KLatPAQARAPBaseK
12 simpr2 KLatPAQARAQA
13 9 3 atbase QAQBaseK
14 12 13 syl KLatPAQARAQBaseK
15 9 2 latjcl KLatPBaseKQBaseKP˙QBaseK
16 7 11 14 15 syl3anc KLatPAQARAP˙QBaseK
17 simpr3 KLatPAQARARA
18 9 3 atbase RARBaseK
19 17 18 syl KLatPAQARARBaseK
20 9 2 latjcl KLatP˙QBaseKRBaseKP˙Q˙RBaseK
21 7 16 19 20 syl3anc KLatPAQARAP˙Q˙RBaseK
22 9 1 latref KLatP˙Q˙RBaseKP˙Q˙R˙P˙Q˙R
23 21 22 syldan KLatPAQARAP˙Q˙R˙P˙Q˙R
24 breq2 P˙Q˙R=S˙T˙UP˙Q˙R˙P˙Q˙RP˙Q˙R˙S˙T˙U
25 23 24 syl5ibcom KLatPAQARAP˙Q˙R=S˙T˙UP˙Q˙R˙S˙T˙U
26 6 25 sylan KHLPAQARAP˙Q˙R=S˙T˙UP˙Q˙R˙S˙T˙U
27 26 3adant3 KHLPAQARASATAUAP˙Q˙R=S˙T˙UP˙Q˙R˙S˙T˙U
28 27 adantr KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R=S˙T˙UP˙Q˙R˙S˙T˙U
29 5 28 impbid KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U