Metamath Proof Explorer


Theorem 3atnelvolN

Description: The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 3atnelvol.j ˙=joinK
3atnelvol.a A=AtomsK
3atnelvol.v V=LVolsK
Assertion 3atnelvolN KHLPAQARA¬P˙Q˙RV

Proof

Step Hyp Ref Expression
1 3atnelvol.j ˙=joinK
2 3atnelvol.a A=AtomsK
3 3atnelvol.v V=LVolsK
4 hllat KHLKLat
5 4 adantr KHLPAQARAKLat
6 eqid BaseK=BaseK
7 6 1 2 hlatjcl KHLPAQAP˙QBaseK
8 7 3adant3r3 KHLPAQARAP˙QBaseK
9 simpr3 KHLPAQARARA
10 6 2 atbase RARBaseK
11 9 10 syl KHLPAQARARBaseK
12 6 1 latjcl KLatP˙QBaseKRBaseKP˙Q˙RBaseK
13 5 8 11 12 syl3anc KHLPAQARAP˙Q˙RBaseK
14 eqid K=K
15 6 14 latref KLatP˙Q˙RBaseKP˙Q˙RKP˙Q˙R
16 5 13 15 syl2anc KHLPAQARAP˙Q˙RKP˙Q˙R
17 14 1 2 3 lvolnle3at KHLP˙Q˙RVPAQARA¬P˙Q˙RKP˙Q˙R
18 17 an32s KHLPAQARAP˙Q˙RV¬P˙Q˙RKP˙Q˙R
19 18 ex KHLPAQARAP˙Q˙RV¬P˙Q˙RKP˙Q˙R
20 16 19 mt2d KHLPAQARA¬P˙Q˙RV