Metamath Proof Explorer


Theorem 3cyclfrgr

Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypothesis 3cyclfrgr.v V=VtxG
Assertion 3cyclfrgr GFriendGraph1<VvVfpfCyclesGpf=3p0=v

Proof

Step Hyp Ref Expression
1 3cyclfrgr.v V=VtxG
2 eqid EdgG=EdgG
3 1 2 3cyclfrgrrn GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgG
4 frgrusgr GFriendGraphGUSGraph
5 usgrumgr GUSGraphGUMGraph
6 4 5 syl GFriendGraphGUMGraph
7 6 ad4antr GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgGGUMGraph
8 simpr GFriendGraph1<VvVvV
9 8 anim1i GFriendGraph1<VvVbVcVvVbVcV
10 3anass vVbVcVvVbVcV
11 9 10 sylibr GFriendGraph1<VvVbVcVvVbVcV
12 11 adantr GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgGvVbVcV
13 simpr GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgGvbEdgGbcEdgGcvEdgG
14 1 2 umgr3cyclex GUMGraphvVbVcVvbEdgGbcEdgGcvEdgGfpfCyclesGpf=3p0=v
15 7 12 13 14 syl3anc GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgGfpfCyclesGpf=3p0=v
16 15 ex GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgGfpfCyclesGpf=3p0=v
17 16 rexlimdvva GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgGfpfCyclesGpf=3p0=v
18 17 ralimdva GFriendGraph1<VvVbVcVvbEdgGbcEdgGcvEdgGvVfpfCyclesGpf=3p0=v
19 3 18 mpd GFriendGraph1<VvVfpfCyclesGpf=3p0=v