Metamath Proof Explorer


Theorem 3cyclfrgrrn

Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses 3cyclfrgrrn1.v V=VtxG
3cyclfrgrrn1.e E=EdgG
Assertion 3cyclfrgrrn GFriendGraph1<VaVbVcVabEbcEcaE

Proof

Step Hyp Ref Expression
1 3cyclfrgrrn1.v V=VtxG
2 3cyclfrgrrn1.e E=EdgG
3 1 fvexi VV
4 hashgt12el2 VV1<VaVxVax
5 3 4 mp3an1 1<VaVxVax
6 simpr xVaxaVGFriendGraphGFriendGraph
7 pm3.22 xVaVaVxV
8 7 3adant2 xVaxaVaVxV
9 8 adantr xVaxaVGFriendGraphaVxV
10 simpl2 xVaxaVGFriendGraphax
11 1 2 3cyclfrgrrn1 GFriendGraphaVxVaxbVcVabEbcEcaE
12 6 9 10 11 syl3anc xVaxaVGFriendGraphbVcVabEbcEcaE
13 12 3exp1 xVaxaVGFriendGraphbVcVabEbcEcaE
14 13 rexlimiv xVaxaVGFriendGraphbVcVabEbcEcaE
15 5 14 syl 1<VaVaVGFriendGraphbVcVabEbcEcaE
16 15 expcom aV1<VaVGFriendGraphbVcVabEbcEcaE
17 16 pm2.43a aV1<VGFriendGraphbVcVabEbcEcaE
18 17 com13 GFriendGraph1<VaVbVcVabEbcEcaE
19 18 imp GFriendGraph1<VaVbVcVabEbcEcaE
20 19 ralrimiv GFriendGraph1<VaVbVcVabEbcEcaE