Metamath Proof Explorer


Theorem 3cyclfrgrrn2

Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses 3cyclfrgrrn1.v V = Vtx G
3cyclfrgrrn1.e E = Edg G
Assertion 3cyclfrgrrn2 G FriendGraph 1 < V a V b V c V b c a b E b c E c a E

Proof

Step Hyp Ref Expression
1 3cyclfrgrrn1.v V = Vtx G
2 3cyclfrgrrn1.e E = Edg G
3 1 2 3cyclfrgrrn G FriendGraph 1 < V a V b V c V a b E b c E c a E
4 frgrusgr G FriendGraph G USGraph
5 2 usgredgne G USGraph b c E b c
6 5 expcom b c E G USGraph b c
7 6 3ad2ant2 a b E b c E c a E G USGraph b c
8 4 7 syl5com G FriendGraph a b E b c E c a E b c
9 8 adantr G FriendGraph 1 < V a b E b c E c a E b c
10 9 ancrd G FriendGraph 1 < V a b E b c E c a E b c a b E b c E c a E
11 10 reximdv G FriendGraph 1 < V c V a b E b c E c a E c V b c a b E b c E c a E
12 11 reximdv G FriendGraph 1 < V b V c V a b E b c E c a E b V c V b c a b E b c E c a E
13 12 ralimdv G FriendGraph 1 < V a V b V c V a b E b c E c a E a V b V c V b c a b E b c E c a E
14 3 13 mpd G FriendGraph 1 < V a V b V c V b c a b E b c E c a E