Metamath Proof Explorer


Theorem 3cyclfrgrrn2

Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses 3cyclfrgrrn1.v V=VtxG
3cyclfrgrrn1.e E=EdgG
Assertion 3cyclfrgrrn2 GFriendGraph1<VaVbVcVbcabEbcEcaE

Proof

Step Hyp Ref Expression
1 3cyclfrgrrn1.v V=VtxG
2 3cyclfrgrrn1.e E=EdgG
3 1 2 3cyclfrgrrn GFriendGraph1<VaVbVcVabEbcEcaE
4 frgrusgr GFriendGraphGUSGraph
5 2 usgredgne GUSGraphbcEbc
6 5 expcom bcEGUSGraphbc
7 6 3ad2ant2 abEbcEcaEGUSGraphbc
8 4 7 syl5com GFriendGraphabEbcEcaEbc
9 8 adantr GFriendGraph1<VabEbcEcaEbc
10 9 ancrd GFriendGraph1<VabEbcEcaEbcabEbcEcaE
11 10 reximdv GFriendGraph1<VcVabEbcEcaEcVbcabEbcEcaE
12 11 reximdv GFriendGraph1<VbVcVabEbcEcaEbVcVbcabEbcEcaE
13 12 ralimdv GFriendGraph1<VaVbVcVabEbcEcaEaVbVcVbcabEbcEcaE
14 3 13 mpd GFriendGraph1<VaVbVcVbcabEbcEcaE