Metamath Proof Explorer


Theorem 3dimlem3

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dimlem3 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPQ¬R˙P˙Q¬T˙P˙Q˙R

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 simpr1 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPQ
5 simpr2 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬P˙Q˙R
6 simpl11 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SKHL
7 simpl2l KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SRA
8 simpl12 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPA
9 simpl13 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQA
10 simpl3l KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQR
11 10 necomd KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SRQ
12 2 1 3 hlatexch2 KHLRAPAQARQR˙P˙QP˙R˙Q
13 6 7 8 9 11 12 syl131anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SR˙P˙QP˙R˙Q
14 1 3 hlatjcom KHLQARAQ˙R=R˙Q
15 6 9 7 14 syl3anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQ˙R=R˙Q
16 15 breq2d KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SP˙Q˙RP˙R˙Q
17 13 16 sylibrd KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SR˙P˙QP˙Q˙R
18 5 17 mtod KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬R˙P˙Q
19 simpl1 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SKHLPAQA
20 simpl2 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SRASA
21 simpl3r KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬T˙Q˙R˙S
22 simpr3 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SP˙Q˙R˙S
23 1 2 3 3dimlem3a KHLPAQARASA¬T˙Q˙R˙S¬P˙Q˙RP˙Q˙R˙S¬T˙P˙Q˙R
24 19 20 21 5 22 23 syl113anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬T˙P˙Q˙R
25 4 18 24 3jca KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPQ¬R˙P˙Q¬T˙P˙Q˙R