Metamath Proof Explorer


Theorem 3wlkdlem8

Description: Lemma 8 for 3wlkd . (Contributed by Alexander van der Vekens, 12-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
Assertion 3wlkdlem8 φF0=JF1=KF2=L

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 1 2 3 4 5 3wlkdlem7 φJVKVLV
7 s3fv0 JV⟨“JKL”⟩0=J
8 s3fv1 KV⟨“JKL”⟩1=K
9 s3fv2 LV⟨“JKL”⟩2=L
10 7 8 9 3anim123i JVKVLV⟨“JKL”⟩0=J⟨“JKL”⟩1=K⟨“JKL”⟩2=L
11 6 10 syl φ⟨“JKL”⟩0=J⟨“JKL”⟩1=K⟨“JKL”⟩2=L
12 2 fveq1i F0=⟨“JKL”⟩0
13 12 eqeq1i F0=J⟨“JKL”⟩0=J
14 2 fveq1i F1=⟨“JKL”⟩1
15 14 eqeq1i F1=K⟨“JKL”⟩1=K
16 2 fveq1i F2=⟨“JKL”⟩2
17 16 eqeq1i F2=L⟨“JKL”⟩2=L
18 13 15 17 3anbi123i F0=JF1=KF2=L⟨“JKL”⟩0=J⟨“JKL”⟩1=K⟨“JKL”⟩2=L
19 11 18 sylibr φF0=JF1=KF2=L