Metamath Proof Explorer


Theorem 4atlem4a

Description: Lemma for 4at . Frequently used associative law. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem4a KHLPAQARASAP˙Q˙R˙S=P˙Q˙R˙S

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simpl1 KHLPAQARASAKHL
5 4 hllatd KHLPAQARASAKLat
6 simpl2 KHLPAQARASAPA
7 eqid BaseK=BaseK
8 7 3 atbase PAPBaseK
9 6 8 syl KHLPAQARASAPBaseK
10 simpl3 KHLPAQARASAQA
11 7 3 atbase QAQBaseK
12 10 11 syl KHLPAQARASAQBaseK
13 simprl KHLPAQARASARA
14 simprr KHLPAQARASASA
15 7 2 3 hlatjcl KHLRASAR˙SBaseK
16 4 13 14 15 syl3anc KHLPAQARASAR˙SBaseK
17 7 2 latjass KLatPBaseKQBaseKR˙SBaseKP˙Q˙R˙S=P˙Q˙R˙S
18 5 9 12 16 17 syl13anc KHLPAQARASAP˙Q˙R˙S=P˙Q˙R˙S
19 2 3 hlatjass KHLQARASAQ˙R˙S=Q˙R˙S
20 4 10 13 14 19 syl13anc KHLPAQARASAQ˙R˙S=Q˙R˙S
21 20 oveq2d KHLPAQARASAP˙Q˙R˙S=P˙Q˙R˙S
22 18 21 eqtr4d KHLPAQARASAP˙Q˙R˙S=P˙Q˙R˙S