Metamath Proof Explorer


Theorem 4atlem9

Description: Lemma for 4at . Substitute W for S . (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem9 KHLPAQARASAWA¬S˙P˙Q˙RS˙P˙Q˙R˙WP˙Q˙R˙S=P˙Q˙R˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simp11 KHLPAQARASAWA¬S˙P˙Q˙RKHL
5 simp22 KHLPAQARASAWA¬S˙P˙Q˙RSA
6 simp23 KHLPAQARASAWA¬S˙P˙Q˙RWA
7 4 hllatd KHLPAQARASAWA¬S˙P˙Q˙RKLat
8 simp1 KHLPAQARASAWA¬S˙P˙Q˙RKHLPAQA
9 eqid BaseK=BaseK
10 9 2 3 hlatjcl KHLPAQAP˙QBaseK
11 8 10 syl KHLPAQARASAWA¬S˙P˙Q˙RP˙QBaseK
12 simp21 KHLPAQARASAWA¬S˙P˙Q˙RRA
13 9 3 atbase RARBaseK
14 12 13 syl KHLPAQARASAWA¬S˙P˙Q˙RRBaseK
15 9 2 latjcl KLatP˙QBaseKRBaseKP˙Q˙RBaseK
16 7 11 14 15 syl3anc KHLPAQARASAWA¬S˙P˙Q˙RP˙Q˙RBaseK
17 simp3 KHLPAQARASAWA¬S˙P˙Q˙R¬S˙P˙Q˙R
18 9 1 2 3 hlexchb2 KHLSAWAP˙Q˙RBaseK¬S˙P˙Q˙RS˙W˙P˙Q˙RS˙P˙Q˙R=W˙P˙Q˙R
19 4 5 6 16 17 18 syl131anc KHLPAQARASAWA¬S˙P˙Q˙RS˙W˙P˙Q˙RS˙P˙Q˙R=W˙P˙Q˙R
20 1 2 3 4atlem4d KHLPAQARAWAP˙Q˙R˙W=W˙P˙Q˙R
21 8 12 6 20 syl12anc KHLPAQARASAWA¬S˙P˙Q˙RP˙Q˙R˙W=W˙P˙Q˙R
22 21 breq2d KHLPAQARASAWA¬S˙P˙Q˙RS˙P˙Q˙R˙WS˙W˙P˙Q˙R
23 1 2 3 4atlem4d KHLPAQARASAP˙Q˙R˙S=S˙P˙Q˙R
24 8 12 5 23 syl12anc KHLPAQARASAWA¬S˙P˙Q˙RP˙Q˙R˙S=S˙P˙Q˙R
25 24 21 eqeq12d KHLPAQARASAWA¬S˙P˙Q˙RP˙Q˙R˙S=P˙Q˙R˙WS˙P˙Q˙R=W˙P˙Q˙R
26 19 22 25 3bitr4d KHLPAQARASAWA¬S˙P˙Q˙RS˙P˙Q˙R˙WP˙Q˙R˙S=P˙Q˙R˙W