Metamath Proof Explorer


Theorem ablomuldiv

Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X=ranG
abldiv.3 D=/gG
Assertion ablomuldiv GAbelOpAXBXCXAGBDC=ADCGB

Proof

Step Hyp Ref Expression
1 abldiv.1 X=ranG
2 abldiv.3 D=/gG
3 1 ablocom GAbelOpAXBXAGB=BGA
4 3 3adant3r3 GAbelOpAXBXCXAGB=BGA
5 4 oveq1d GAbelOpAXBXCXAGBDC=BGADC
6 3ancoma AXBXCXBXAXCX
7 ablogrpo GAbelOpGGrpOp
8 1 2 grpomuldivass GGrpOpBXAXCXBGADC=BGADC
9 7 8 sylan GAbelOpBXAXCXBGADC=BGADC
10 6 9 sylan2b GAbelOpAXBXCXBGADC=BGADC
11 simpr2 GAbelOpAXBXCXBX
12 1 2 grpodivcl GGrpOpAXCXADCX
13 7 12 syl3an1 GAbelOpAXCXADCX
14 13 3adant3r2 GAbelOpAXBXCXADCX
15 11 14 jca GAbelOpAXBXCXBXADCX
16 1 ablocom GAbelOpBXADCXBGADC=ADCGB
17 16 3expb GAbelOpBXADCXBGADC=ADCGB
18 15 17 syldan GAbelOpAXBXCXBGADC=ADCGB
19 5 10 18 3eqtrd GAbelOpAXBXCXAGBDC=ADCGB