Metamath Proof Explorer


Theorem ablonncan

Description: Cancellation law for group division. ( nncan analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X=ranG
abldiv.3 D=/gG
Assertion ablonncan GAbelOpAXBXADADB=B

Proof

Step Hyp Ref Expression
1 abldiv.1 X=ranG
2 abldiv.3 D=/gG
3 id AXAXBXAXAXBX
4 3 3anidm12 AXBXAXAXBX
5 1 2 ablodivdiv GAbelOpAXAXBXADADB=ADAGB
6 4 5 sylan2 GAbelOpAXBXADADB=ADAGB
7 6 3impb GAbelOpAXBXADADB=ADAGB
8 ablogrpo GAbelOpGGrpOp
9 eqid GIdG=GIdG
10 1 2 9 grpodivid GGrpOpAXADA=GIdG
11 8 10 sylan GAbelOpAXADA=GIdG
12 11 3adant3 GAbelOpAXBXADA=GIdG
13 12 oveq1d GAbelOpAXBXADAGB=GIdGGB
14 1 9 grpolid GGrpOpBXGIdGGB=B
15 8 14 sylan GAbelOpBXGIdGGB=B
16 15 3adant2 GAbelOpAXBXGIdGGB=B
17 7 13 16 3eqtrd GAbelOpAXBXADADB=B