Metamath Proof Explorer


Theorem absefi

Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of Rudin p. 167. (Contributed by Jason Orendorff, 9-Feb-2007)

Ref Expression
Assertion absefi AeiA=1

Proof

Step Hyp Ref Expression
1 recn AA
2 efival AeiA=cosA+isinA
3 1 2 syl AeiA=cosA+isinA
4 3 fveq2d AeiA=cosA+isinA
5 recoscl AcosA
6 resincl AsinA
7 absreim cosAsinAcosA+isinA=cosA2+sinA2
8 5 6 7 syl2anc AcosA+isinA=cosA2+sinA2
9 5 resqcld AcosA2
10 9 recnd AcosA2
11 6 resqcld AsinA2
12 11 recnd AsinA2
13 10 12 addcomd AcosA2+sinA2=sinA2+cosA2
14 sincossq AsinA2+cosA2=1
15 1 14 syl AsinA2+cosA2=1
16 13 15 eqtrd AcosA2+sinA2=1
17 16 fveq2d AcosA2+sinA2=1
18 sqrt1 1=1
19 17 18 eqtrdi AcosA2+sinA2=1
20 8 19 eqtrd AcosA+isinA=1
21 4 20 eqtrd AeiA=1