Metamath Proof Explorer


Theorem abslt2sqd

Description: Comparison of the square of two numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses abslt2sqd.a φA
abslt2sqd.b φB
abslt2sqd.l φA<B
Assertion abslt2sqd φA2<B2

Proof

Step Hyp Ref Expression
1 abslt2sqd.a φA
2 abslt2sqd.b φB
3 abslt2sqd.l φA<B
4 1 recnd φA
5 4 abscld φA
6 4 absge0d φ0A
7 2 recnd φB
8 7 abscld φB
9 7 absge0d φ0B
10 lt2sq A0AB0BA<BA2<B2
11 5 6 8 9 10 syl22anc φA<BA2<B2
12 3 11 mpbid φA2<B2
13 absresq AA2=A2
14 1 13 syl φA2=A2
15 absresq BB2=B2
16 2 15 syl φB2=B2
17 14 16 breq12d φA2<B2A2<B2
18 12 17 mpbid φA2<B2