Metamath Proof Explorer


Theorem add4

Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion add4 ABCDA+B+C+D=A+C+B+D

Proof

Step Hyp Ref Expression
1 add12 BCDB+C+D=C+B+D
2 1 3expb BCDB+C+D=C+B+D
3 2 oveq2d BCDA+B+C+D=A+C+B+D
4 3 adantll ABCDA+B+C+D=A+C+B+D
5 addcl CDC+D
6 addass ABC+DA+B+C+D=A+B+C+D
7 6 3expa ABC+DA+B+C+D=A+B+C+D
8 5 7 sylan2 ABCDA+B+C+D=A+B+C+D
9 addcl BDB+D
10 addass ACB+DA+C+B+D=A+C+B+D
11 10 3expa ACB+DA+C+B+D=A+C+B+D
12 9 11 sylan2 ACBDA+C+B+D=A+C+B+D
13 12 an4s ABCDA+C+B+D=A+C+B+D
14 4 8 13 3eqtr4d ABCDA+B+C+D=A+C+B+D