Description: If adding a number to a another number yields the other number, the added number must be 0 . This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | addid0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | simpr | |
|
3 | 1 1 2 | subaddd | |
4 | eqcom | |
|
5 | simpr | |
|
6 | subid | |
|
7 | 6 | adantr | |
8 | 5 7 | eqtrd | |
9 | 8 | ex | |
10 | 4 9 | biimtrid | |
11 | 10 | adantr | |
12 | 3 11 | sylbird | |
13 | oveq2 | |
|
14 | addrid | |
|
15 | 13 14 | sylan9eqr | |
16 | 15 | ex | |
17 | 16 | adantr | |
18 | 12 17 | impbid | |