Metamath Proof Explorer


Theorem addid0

Description: If adding a number to a another number yields the other number, the added number must be 0 . This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021)

Ref Expression
Assertion addid0 XYX+Y=XY=0

Proof

Step Hyp Ref Expression
1 simpl XYX
2 simpr XYY
3 1 1 2 subaddd XYXX=YX+Y=X
4 eqcom XX=YY=XX
5 simpr XY=XXY=XX
6 subid XXX=0
7 6 adantr XY=XXXX=0
8 5 7 eqtrd XY=XXY=0
9 8 ex XY=XXY=0
10 4 9 biimtrid XXX=YY=0
11 10 adantr XYXX=YY=0
12 3 11 sylbird XYX+Y=XY=0
13 oveq2 Y=0X+Y=X+0
14 addrid XX+0=X
15 13 14 sylan9eqr XY=0X+Y=X
16 15 ex XY=0X+Y=X
17 16 adantr XYY=0X+Y=X
18 12 17 impbid XYX+Y=XY=0