Metamath Proof Explorer


Theorem addsubeq4com

Description: Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023)

Ref Expression
Assertion addsubeq4com ABCDA+B=C+DAC=DB

Proof

Step Hyp Ref Expression
1 eqcom A+B=C+DC+D=A+B
2 addsubeq4 CDABC+D=A+BAC=DB
3 2 ancoms ABCDC+D=A+BAC=DB
4 1 3 bitrid ABCDA+B=C+DAC=DB