Metamath Proof Explorer


Theorem adjmo

Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjmo *uu:xyxihTy=uxihy

Proof

Step Hyp Ref Expression
1 r19.26-2 xyxihTy=uxihyxihTy=vxihyxyxihTy=uxihyxyxihTy=vxihy
2 eqtr2 xihTy=uxihyxihTy=vxihyuxihy=vxihy
3 2 2ralimi xyxihTy=uxihyxihTy=vxihyxyuxihy=vxihy
4 1 3 sylbir xyxihTy=uxihyxyxihTy=vxihyxyuxihy=vxihy
5 hoeq1 u:v:xyuxihy=vxihyu=v
6 5 biimpa u:v:xyuxihy=vxihyu=v
7 4 6 sylan2 u:v:xyxihTy=uxihyxyxihTy=vxihyu=v
8 7 an4s u:xyxihTy=uxihyv:xyxihTy=vxihyu=v
9 8 gen2 uvu:xyxihTy=uxihyv:xyxihTy=vxihyu=v
10 feq1 u=vu:v:
11 fveq1 u=vux=vx
12 11 oveq1d u=vuxihy=vxihy
13 12 eqeq2d u=vxihTy=uxihyxihTy=vxihy
14 13 2ralbidv u=vxyxihTy=uxihyxyxihTy=vxihy
15 10 14 anbi12d u=vu:xyxihTy=uxihyv:xyxihTy=vxihy
16 15 mo4 *uu:xyxihTy=uxihyuvu:xyxihTy=uxihyv:xyxihTy=vxihyu=v
17 9 16 mpbir *uu:xyxihTy=uxihy